In the title compound, CHNO·CHNO, the asymmetric unit contains two crystallographically independent mol-ecules and , each of which has one DMF solvate mol-ecule. Mol-ecules and both feature intra-molecular N-H⋯O hydrogen bonds, forming (6) ring motifs and consolidating the mol-ecular configuration. In the crystal, N-H⋯O and O-H⋯O hydrogen bonds connect mol-ecules and , forming (8) ring motifs. Weak C-H⋯O inter-actions link the mol-ecules, forming layers parallel to the (12) plane. The DMF solvent mol-ecules are also connected to the main mol-ecules ( and ) by N-H⋯O hydrogen bonds. π-π stacking inter-actions [centroid-to-centroid distance = 3.8702 (17) Å] between the layers also increase the stability of the mol-ecular structure in the third dimension. According to the Hirshfeld surface study, O⋯H/H⋯O inter-actions are the most significant contributors to the crystal packing (27.5% for mol-ecule and 25.1% for mol-ecule ).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848978PMC
http://dx.doi.org/10.1107/S2056989023011118DOI Listing

Publication Analysis

Top Keywords

hydrogen bonds
12
hirshfeld surface
8
n-h⋯o hydrogen
8
forming ring
8
ring motifs
8
mol-ecules forming
8
mol-ecules
6
crystal structure
4
structure hirshfeld
4
surface analysis
4

Similar Publications

Cyclin-dependent kinases 4 and 6 (CDK4/6) are crucial regulators of cell cycle progression and represent important therapeutic targets in breast cancer. This study employs a comprehensive computational approach to identify novel CDK4/6 inhibitors from marine natural products. We utilized structure-based virtual screening of the CMNPD database and MNP library, followed by rigorous filtering based on drug-likeness criteria, PAINS filter, ADME properties, and toxicity profiles.

View Article and Find Full Text PDF

Natural Organic Matter Stabilizes Pristine Nanoplastics but Destabilizes Photochemical Weathered Nanoplastics in Monovalent Electrolyte Solutions.

Environ Sci Technol

January 2025

Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands.

Photochemical weathering and eco-corona formation through natural organic matter (NOM) adsorption play vital roles in the aggregation tendencies of nanoplastics (NPs) in aquatic environments. However, it remains unclear how photochemical weathering alters the adsorption patterns of NOM and the conformation of the eco-corona, subsequently affecting the aggregation tendencies of NPs. This study examined the effect of Suwannee River NOM adsorption on the aggregation kinetics of pristine and photoaged polystyrene (PS) NPs in monovalent electrolyte solutions.

View Article and Find Full Text PDF

This study explores the formulation and characterization of poly(vinyl alcohol) (PVA)-based composite hydrogels synthesized through solid-state crosslinking. Comprehensive assessments were conducted on their physicochemical properties, leachables, and immunogenicity. Swelling experiments demonstrated that the incorporation of poly(vinylpyrrolidone) (PVP) enhanced water retention, while chitosan had a minimal effect on swelling behavior.

View Article and Find Full Text PDF

(1,2)--Aminoindanol and (1,2)--aminoindanol, denoted as -AI and -AI, are diastereoisomer aromatic aminoalcohols differing by the presence of a weak intramolecular hydrogen bond in -AI, which is absent in -AI. They also differ by the number of conformers under supersonic jet conditions, one for -AI and two for -AI. One-photon and resonance-enhanced two-photon photoelectron circular dichroism (PECD) spectra are obtained for the two molecules.

View Article and Find Full Text PDF

Defluorination reactions are increasingly vital due to the extensive use of organofluorine compounds with robust carbon-fluorine (C-F) bonds; particularly, the efficient defluorination of widespread and persistent per- and polyfluoroalkyl substances under mild conditions is crucial due to their accumulation in the environment and human body. Herein, we demonstrate that surface-modified silicate of pronounced proton affinity can confine active hydrogen (•H) onto nanoscale zerovalent iron (nZVI) by withdrawing electrons from nZVI to react with bound protons, generating confined active hydrogen (•H) for efficient defluorination under ambient conditions. The exposed silicon cation (Si) of silicate functions as a Lewis acid site to activate the C-F bond by forming Si.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!