π-Conjugated polymers such as polythiophene provide intramolecular wire effects upon analyte capture, which contribute to sensitive detection in chemical sensing. However, inherent aggregation-induced quenching causes difficulty in fluorescent chemical sensing in the solid state. Herein, we propose a solid-state fluorescent chemosensor array device made of a paper substrate (PCSAD) for the qualitative and quantitative detection of metal ions. A polythiophene derivative modified by dipicolylamine moieties (1), which shows optical changes upon the addition of target metal ions (, Cu, Cd, Ni, Co, Pb, Zn, and Hg), was highly dispersed on the paper substrate using office apparatus. In this regard, morphological observation of the PCSAD after printing of 1 suggested the contribution of the fiber structures of the paper substrate to the homogeneous dispersion of 1 ink to suppress aggregation-induced quenching. The optical changes in the PCSAD upon the addition of metal ions was rapidly recorded using a smartphone, which was further applied to imaging analysis and pattern recognition techniques for high-throughput sensing. Indeed, the printed PCSAD embedded with 1 achieved the accurate detection of metal ions at ppm levels contained in river water. The limit of detection of the PCSAD-based sensing system using a smartphone (48 ppb for Cu ions) is comparable to that of a solution-based sensing system using a stationary spectrophotometer (16 ppb for Cu ions). Therefore, the methodology based on a combination of a paper-based sensor array and a π-conjugated polymer will be a promising approach for solid-state fluorescent chemosensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851342 | PMC |
http://dx.doi.org/10.1039/d3ra08429a | DOI Listing |
Int J Nanomedicine
January 2025
Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
Purpose: Multi-walled carbon nanotubes (MWCNTs) were used as carriers for silver nanoparticles (AgNPs). In this process, MWCNTs were coated with mesoporous silica (MWCNT-Silica) for uniform and regular loading of AgNPs on the MWCNTs. In addition, astaxanthin (AST) extract was used as a reducing agent for silver ions to enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs.
View Article and Find Full Text PDFHeliyon
January 2025
School of Life Sciences, Department of Biochemistry, Molecular Oncology Laboratory, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
The plasmonic metal doping on the UV-active metal oxide nanoparticle turns the resultant plasmonic metal-metal oxide (PMMO) into visible light active and upon exogenous illumination the photogenerated energetic charge carriers and the generated reactive oxygen species (ROS, e.g. ·OH and O ) authoritatively enhances its biological and catalytic activity.
View Article and Find Full Text PDFInorg Chem Front
January 2025
Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557.
Platinum chemotherapy is part of every second anticancer treatment regimen. However, its application is limited by severe side effects and drug resistance. The combination of platinum-based chemotherapeutics with EGFR inhibitors has shown remarkable synergism in clinical treatment.
View Article and Find Full Text PDFNanoscale
January 2025
Photon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
Oxygen vacancies (V's) are of paramount importance in influencing the properties and applications of ceria (CeO). Yet, comprehending the distribution and nature of V's poses a significant challenge due to the vast number of electronic configurations and intricate many-body interactions among V's and polarons (Ce ions). In this study, we established a cluster expansion model based on first-principles calculations and statistical learning to decouple the interactions among the Ce ions and V's, thereby circumventing the limitations associated with sampling electronic configurations.
View Article and Find Full Text PDFInorg Chem
January 2025
MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
A novel antimonotungstate (AT)-based heterometallic framework {[Er(HO)][Fe(Hpdc)(B-β-SbWO)]}·50HO (, Hpdc = pyridine-2,5-dicarboxylic acid) was obtained through a synergistic strategy of in situ-generated transition-metal-encapsulated polyoxometalate (POM) building units and the substitution reaction. Its structural unit is composed of a tetra-Fe-substituted Krebs-type [Fe(Hpdc)(B-β-SbWO)] subunit and two [Er(HO)] cations. This subunit can be regarded as a product of carboxylic oxygen atoms of Hpdc ligands replacing active water ligands in the [Fe(HO)(B-β-SbWO)] species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!