Climate change is altering species ranges and reproductive interactions in existing ranges, offering species new scope to mate and hybridize. The outcomes will depend on how environmental factors shape reproductive barriers across life stages, yet this is rarely assessed across the environments that species encounter in nature. We assess prezygotic and postzygotic barriers, and their dependence on temperature and parental sex, in species of a reef-building tubeworm (Galeolaria) from a fast-warming biodiversity hotspot in southern Australia. By replicating pure and reciprocal hybrid crosses across 5 temperatures spanning species' thermal ranges, we estimate thermal tolerance curves (defining niches) for crosses and reproductive isolation at each temperature. By also replicating crosses at 3 life stages, we partition the contributions of prezygotic barriers at fertilization, postzygotic barriers at embryogenesis, and postzygotic barriers at larval development to reproductive isolation. We show that barriers are weaker at fertilization and embryogenesis, but stronger and more temperature sensitive at larval development, as species diverge in thermal niche. Asymmetry of barriers between parental sexes, moreover, suggests a complex interplay between niche differentiation and maternal inheritance. Our findings point to a key role for temperature in reproductive isolation, but also challenges for predicting the fate of isolation in future climates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/evolut/qpae012 | DOI Listing |
Plants (Basel)
November 2024
Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA.
The angiosperm seed represents a critical evolutionary breakthrough that has been shown to propel the reproductive success and radiation of flowering plants. Seeds promote the rapid diversification of angiosperms by establishing postzygotic reproductive barriers, such as hybrid seed inviability. While prezygotic barriers to reproduction tend to be transient, postzygotic barriers are often permanent and therefore can play a pivotal role in facilitating speciation.
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
December 2024
Irkutsk State University, Irkutsk, Russia.
Comparative studies of reproductive biology and formation of reproductive isolation need appropriate model systems, such as groups of related species. The amphipods (Crustacea: Amphipoda) of ancient Lake Baikal are an attractive group for such works, as they consist of several hundred species that radiated within the lake and have very different levels of intraspecific genetic diversity and reproduction timing. We have previously shown that one of the most widely distributed and best studied littoral species, Eulimnogammarus verrucosus (Gersfeldt, 1858), comprises cryptic species exhibiting a post-zygotic reproductive barrier.
View Article and Find Full Text PDFG3 (Bethesda)
November 2024
Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, University of Oxford, Mansfield Road, Oxford OX1-3SR, UK.
Secondary contact between incompletely isolated species can produce a wide variety of outcomes. The vinegar flies Drosophila simulans and D. sechellia diverged on islands in the Indian Ocean and are currently separated by partial pre- and postzygotic barriers.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Life Sciences, Imperial College London, London, UK.
PLoS One
November 2024
Laboratory for Amphibian Systematics and Evolution, College of Biology & the Environment, Nanjing Forestry University, Nanjing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!