This study investigated the underlying comorbidity mechanism between type 2 diabetes mellitus (T2DM) and osteoarthritis (OA), while also assessing the therapeutic potential of quercetin for early intervention and treatment of these two diseases. The shared genes were obtained through GEO2R, limma and weighted gene co-expression network analysis (WGCNA), and validated using clinical databases and the area under the curves (ROC). Functional enrichment analysis was conducted to elucidate the underlying mechanisms of comorbidity between T2DM and OA. The infiltration of immune cells was analysed using the CIBERSORT algorithm in conjunction with ESTIMATE algorithm. Subsequently, transcriptional regulation analysis, potential chemical prediction, gene-disease association, relationships between the shared genes and ferroptosis as well as immunity-related genes were investigated along with molecular docking. We identified the 12 shared genes (EPHA3, RASIP1, PENK, LRRC17, CEBPB, EFEMP2, UBAP1, PPP1R15A, SPEN, MAFF, GADD45B and KLF4) across the four datasets. Our predictions suggested that targeting these shared genes could potentially serve as therapeutic interventions for both T2DM and OA. Specifically, they are involved in key signalling pathways such as p53, IL-17, NF-kB and MAPK signalling pathways. Furthermore, the regulation of ferroptosis and immunity appears to be interconnected in both diseases. Notably, in this context quercetin emerges as a promising drug candidate for treating T2DM and OA by specifically targeting the shared genes. We conducted a bioinformatics analysis to identify potential therapeutic targets, mechanisms and drugs for T2DM and OA, thereby offering novel insights into molecular therapy for these two diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853600PMC
http://dx.doi.org/10.1111/jcmm.18127DOI Listing

Publication Analysis

Top Keywords

shared genes
24
type diabetes
8
diabetes mellitus
8
targeting shared
8
signalling pathways
8
genes
7
t2dm
5
shared
5
identification shared
4
genes type
4

Similar Publications

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

The case of Lumbar spinal stenosis (LSS) combined with tophi due to gout is rarely reported. In the course of our clinic work, we encountered a young male patient who was diagnosed with a history of gout for 5 years and was targeted as LSS combined with gouty tophi, and we would like to share this case. In addition, in order to further investigate the deep mechanism of LSS associated with gout, we obtained the intersecting genes of the two diseases based on a machine learning approach by obtaining the dataset GSE113212 related to LSS from the Gene Expression Omnibus (GEO) database, and the genes related to gout from the human gene database.

View Article and Find Full Text PDF

Obesity (OB) and atherosclerosis (AS) represent two highly prevalent and detrimental chronic diseases that are intricately linked. However, the shared genetic signatures and molecular pathways underlying these two conditions remain elusive. This study aimed to identify the shared diagnostic genes and the associated molecular mechanism between OB and AS.

View Article and Find Full Text PDF

Cross-trait multivariate GWAS confirms health implications of pubertal timing.

Nat Commun

January 2025

Laboratory of Molecular Translational Medicine, Center for Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.

Pubertal timing is highly variable and is associated with long-term health outcomes. Phenotypes associated with pubertal timing include age at menarche, age at voice break, age at first facial hair and growth spurt, and pubertal timing seems to have a shared genetic architecture between the sexes. However, puberty phenotypes have primarily been assessed separately, failing to account for shared genetics, which limits the reliability of the purported health implications.

View Article and Find Full Text PDF

Multiplexed transcriptomic analyzes of the plant embryonic hourglass.

Nat Commun

January 2025

School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, USA.

Zoologists have adduced morphological convergence among embryonic stages of closely related taxa, which has been called the phylotypic stage of embryogenesis. Transcriptomic analyzes reveal an hourglass pattern of gene expression during plant and animal embryogenesis, characterized by the accumulation of evolutionarily older and conserved transcripts during mid-embryogenesis, whereas younger less-conserved transcripts predominate at earlier and later embryonic stages. In contrast, comparisons of embryonic gene expression among different animal phyla describe an inverse hourglass pattern, where expression is correlated during early and late stages but not during mid-embryo development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!