Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Synthesizing the best material globally is challenging; it needs to know what and how much the best ingredient composition should be for satisfying multiple figures of merit simultaneously. Traditional one-variable-at-a-time methods are inefficient; the design-build-test-learn (DBTL) method could achieve the optimal composition from only a handful of ingredients. A vast design space needs to be explored to discover the possible global optimal composition for on-demand materials synthesis. This research developed a hypothesis-guided DBTL (H-DBTL) method combined with robots to expand the dimensions of the search space, thereby achieving a better global optimal performance. First, this study engineered the search space with knowledge-aware chemical descriptors and customized multiobjective functions to fulfill on-demand research objectives. To verify this concept, this novel method was used to optimize colorimetric ammonia sensors across a vast design space of as high as 19 variables, achieving two remarkable optimization goals within 1 week: first, a sensing array was developed for ammonia quantification of a wide dynamic range, from 0.5 to 500 ppm; second, a new state-of-the-art detection limit of 50 ppb was reached. This work demonstrates that the H-DBTL approach, combined with a robot, develops a novel paradigm for the on-demand optimization of functional materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.3c02043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!