Application of genome editing techniques to regulate gene expression in crops.

BMC Plant Biol

College of Agronomy and Biotechnology, Yunnan Agriculture University, Kunming, 650201, Yunnan, China.

Published: February 2024

Background: Enhanced agricultural production is urgently required to meet the food demands of the increasing global population. Abundant genetic diversity is expected to accelerate crop development. In particular, the development of the CRISPR/Cas genome editing technology has greatly enhanced our ability to improve crop's genetic diversity through direct artificial gene modification. However, recent studies have shown that most crop improvement efforts using CRISPR/Cas techniques have mainly focused on the coding regions, and there is a relatively lack of studies on the regulatory regions of gene expression.

Results: This review briefly summarizes the development of CRISPR/Cas system in the beginning. Subsequently, the importance of gene regulatory regions in plants is discussed. The review focuses on recent developments and applications of mutations in regulatory regions via CRISPR/Cas techniques in crop breeding.

Conclusion: Finally, an outline of perspectives for future crop breeding using genome editing technologies is provided. This review provides new research insights for crop improvement using genome editing techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854132PMC
http://dx.doi.org/10.1186/s12870-024-04786-2DOI Listing

Publication Analysis

Top Keywords

genome editing
16
regulatory regions
12
editing techniques
8
genetic diversity
8
development crispr/cas
8
crop improvement
8
crispr/cas techniques
8
crop
5
application genome
4
editing
4

Similar Publications

Crystal structure of the anti-CRISPR protein AcrIE7.

Biochem Biophys Res Commun

January 2025

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China; Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China. Electronic address:

Bacterial adaptive immunity, driven by CRISPR-Cas systems, protects against foreign nucleic acids from mobile genetic elements (MGEs), like bacteriophages. The type I-E CRISPR-Cas system employs the Cascade (CRISPR-associated complex for antiviral defense) complex for target DNA cleavage, guided by crRNA. Anti-CRISPR (Acr) proteins, such as AcrIE7, counteract this defense by inhibiting Cascade activity.

View Article and Find Full Text PDF

Galactinol synthase 4 influences plant height by affecting phenylpropanoid metabolism and the balance of soluble carbohydrates in tomato.

Plant Physiol Biochem

January 2025

Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China. Electronic address:

Plant height is a key trait that significantly influences plant architecture, disease resistance, adaptability to mechanical cultivation, and overall economic yield. Galactinol synthase (GolS) is a crucial enzyme involved in the biosynthesis of raffinose family oligosaccharides (RFOs). It plays a significant role in carbohydrate transport and storage, combating abiotic and biotic stresses, and regulating plant growth and development.

View Article and Find Full Text PDF

Molecular advances in research and applications of male sterility systems in tomato.

Plant Physiol Biochem

January 2025

Department of Vegetable Science, Institute of Agricultural Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751029, India.

Tomato, belonging to the nightshade family, is globally considered as a model system for classical and molecular genetics, genomics, and reproductive developmental studies. In the current scenario of climate change, hybrid development is among the crucial elements in the genetic improvement of crop plants. The phenomenon of male sterility is a viable approach for ensuring hybrid seed purity and reducing the cost of hybrid seed production.

View Article and Find Full Text PDF

Peptide nucleic acids (PNA), synthetic molecules comprising a peptide-like backbone and natural and unnatural nucleobases, have garnered significant attention for their potential applications in gene editing and other biomedical fields. The unique properties of PNA, particularly enhanced stability/specificity/affinity towards targeted DNA and RNA sequences, achieved significant attention recently for gene silencing, gene correction, antisense therapy, drug delivery, biosensing and other various diagnostic aspects. This review explores the structure, properties, and potential of PNA in transforming genetic engineering including potent biomedical challenges.

View Article and Find Full Text PDF

Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!