Acidity-activated aggregation and accumulation of self-complementary zwitterionic peptide-decorated gold nanoparticles for photothermal biofilm eradication.

J Colloid Interface Sci

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China. Electronic address:

Published: June 2024

Drug-resistant biofilm infection is an extremely serious clinical problem, that easily leads to failure of antibiotic treatment. Although gold nanoparticles (AuNPs) as photothermal agents have been widely used in biofilm eradication, there are still challenges to be addressed, such as insignificantly redshifted absorption and slow assembly process of aggregated AuNPs. Herein, we developed an acidity-activated dispersion-to-aggregation transition to enhance the accumulation of self-complementary zwitterionic peptide-decorated AuNPs for photothermal eradication of drug-resistant biofilm infections. AuNPs were decorated with self-complementary zwitterionic peptides (ZP1 and ZP2) coupled with pH-sensitive anhydride (DMA) and pH-insensitive anhydride (SA), respectively. ZP2-decorated AuNPs with DMA modification (AuNP@ZP2(DMA)) exhibited prolonged blood circulation and enhanced accumulation in acidic biofilm microenvironment. Moreover, the electrostatic attraction between self-complementary ligands drove AuNPs to form closely packed aggregates with strong near-infrared absorption, leading to in vivo photoacoustic imaging ability and photothermal effect against drug-resistant bacteria and fungus, as well as microbial biofilms. AuNP@ZP2(DMA) with longer charge domains and a polyethylene glycol oligomer spacer showed greater photothermal antimicrobial and biofilm resistance in vitro and in vivo. This study develops an innovative acidity-activated AuNP photothermal agent, which provides an effective approach for treatment of biofilm infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.02.018DOI Listing

Publication Analysis

Top Keywords

self-complementary zwitterionic
12
accumulation self-complementary
8
zwitterionic peptide-decorated
8
gold nanoparticles
8
biofilm eradication
8
eradication drug-resistant
8
drug-resistant biofilm
8
aunps photothermal
8
biofilm infections
8
biofilm
7

Similar Publications

Acidity-activated aggregation and accumulation of self-complementary zwitterionic peptide-decorated gold nanoparticles for photothermal biofilm eradication.

J Colloid Interface Sci

June 2024

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China. Electronic address:

Drug-resistant biofilm infection is an extremely serious clinical problem, that easily leads to failure of antibiotic treatment. Although gold nanoparticles (AuNPs) as photothermal agents have been widely used in biofilm eradication, there are still challenges to be addressed, such as insignificantly redshifted absorption and slow assembly process of aggregated AuNPs. Herein, we developed an acidity-activated dispersion-to-aggregation transition to enhance the accumulation of self-complementary zwitterionic peptide-decorated AuNPs for photothermal eradication of drug-resistant biofilm infections.

View Article and Find Full Text PDF

Supramolecular self-assembly in biological systems holds promise to convert and amplify disease-specific signals to physical or mechanical signals that can direct cell fate. However, it remains challenging to design physiologically stable self-assembling systems that demonstrate tunable and predictable behavior. Here, the use of zwitterionic tetrapeptide modalities to direct nanoparticle assembly under physiological conditions is reported.

View Article and Find Full Text PDF

The dual pH-induced reversible self-assembly (PIRSA) of Au-nanoparticles (Au NPs) is reported, based on their decoration with the self-complementary guanidiniocarbonyl pyrrole carboxylate zwitterion (GCPZ). The assembly of such functionalized Au NPs is found at neutral pH, based on supramolecular pairing of the GCPZ groups. The resulting self-assembled system can be switched back to the disassembled state by addition of base or acid.

View Article and Find Full Text PDF

The synthesis and self-assembly of a polymer featuring a self-complementary supramolecular binding motif guanidiniocarbonyl pyrrole carboxylate zwitterion (GCP-zwitterion) bearing lactose moieties are reported. The GCP-zwitterion acts as a cross-linker to facilitate self-assembly of the polymeric chain into nanoparticles (NPs) at neutral pH in an aqueous medium. The formation of polymeric NPs can be controlled by addition of external stimuli (acid or base), which disfavors self-assembly of the GCP-zwitterion because of protonation or deprotonation of the GCP units in the polymer chain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!