Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Tetracycline (TC), a cost-effective broad-spectrum antibacterial drug, has been excessively utilized in the livestock and poultry industry, leading to a serious overabundance of TC in livestock wastewater. However, conventional analytical methods such as liquid chromatography and gas chromatography face challenges in achieving sensitive detection of trace amounts of TC in complex substrates. Therefore, it is imperative to develop a highly sensitive and anti-interference analytical method for the detection of tetracycline in livestock wastewater.
Results: A porphyrin-based MOF (PCN-224)-confined carbon dots (CDs) material (CDs@PCN-224) was synthesized by a "bottle-around-ship" strategy. The reduced carrier migration distance is conducive to the separation of electron-hole pairs and enhanced the photocurrent signal due to the tight coupling of CDs and PCN-224. Further, molecularly imprinted polymer (MIP) was synthesized by rapid in-situ UV-polymerization and employed as a recognition element. The specific recognition of the target by imprinted cavities blocks electron transfer, resulting in a "turn off" response signal, thus realizing the selective detection of TC. Under optimal conditions, the constructed MIP-PEC cathodic sensor detected 1.00 × 10 M to 1.00 × 10 M of TC sensitively, with a limit of detection of 3.72 × 10 M. In addition, the proposed MIP-PEC sensor demonstrated good TC detection performance in actual livestock wastewater.
Significance: The strategy based on MOF pore-confined quantum dots can effectively enhance the photocurrent response of the photosensitive substrate. Simultaneously, the MIP constructed by in-situ rapid UV-polymerization showed excellent anti-interference and reusable properties. This work provides a promising MIP-PEC cathodic sensing method for the rapid and sensitive detection of antibiotics in complex-matrix environmental samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2024.342269 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!