The need for anticancer therapies that overcome metallodrug resistance while minimizing adverse toxicities is targeted, herein, using titanium coordination complexes. Octahedral titanium(IV) ,-[Ti{RN(CH-2-MeO-4-R-CH)}] [R = Et, allyl, -Pr, CHO, F, CH(morpholino), the latter from the formyl derivative; R = Me, Et; not all combinations] are attained from Mannich reactions of commercial 2-methoxyphenols (27-74% overall yield, 2 steps). These crystalline (four X-ray structures) Ti(IV)-complexes are active against MCF-7, HCT-116, HT-29, PANC-1, and MDA-MB-468 cancer cell lines (GI = 0.5-38 μM). Their activity and cancer selectivity (vs nontumor MRC-5 cells) typically exceeds that of cisplatin (up to 16-fold). Proteomic analysis (in MCF-7) supported by other studies (G2/M cell cycle arrest, ROS generation, γH2AX production, caspase activation, annexin positivity, western blot, and kinase screens in MCF-7 and HCT-116) suggest apoptosis elicited by more than one mechanism of action. Comparison of these data to the modes of action proposed for salan Ti(IV) complexes is made.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895680PMC
http://dx.doi.org/10.1021/acs.jmedchem.3c01874DOI Listing

Publication Analysis

Top Keywords

mechanism action
8
mcf-7 hct-116
8
probing mechanism
4
action bisphenolato
4
bisphenolato amine
4
amine ono
4
ono donor
4
donor set
4
set titaniumiv
4
titaniumiv anticancer
4

Similar Publications

This study aimed to investigate the potential protective properties of a traditional Chinese medicine (TCM) herbal product, Siraitia grosvenorii granules (SGG) against PM2.5-induced lung injury, as well as their active constituents and underlying mechanisms. The chemical composition of SGG, such as wogonin (MOL000173), luteolin (MOL000006), nobiletin (MOL005828), naringenin (MOL004328), acacetin (MOL001689), were identified via ultra-high-performance liquid chromatography-Q Exactive (UHPLC-QE) Orbitrap/MS.

View Article and Find Full Text PDF

FBXW7 metabolic reprogramming inhibits the development of colon cancer by down-regulating the activity of arginine/mToR pathways.

PLoS One

January 2025

Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China.

FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry.

View Article and Find Full Text PDF

Background: Posttraumatic stress disorder (PTSD) affects 3.9% of the general population. While massed cognitive processing therapy (CPT) has demonstrated efficacy in treating chronic PTSD, a substantial proportion of patients still continue to meet PTSD criteria after treatment, highlighting the need for novel therapeutic approaches.

View Article and Find Full Text PDF

In this study, we explored the biocultural mechanisms underlying ancient craft behaviours. Archaeological methods were integrated with neuroscience techniques to explore the impact on neuroplasticity resulting from the introduction of early pottery techniques. The advent of ceramic marked a profound change in the economy and socio-cultural dynamics of past societies.

View Article and Find Full Text PDF

Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!