The "background" is an essential index for identifying anthropogenic inputs and potential ecological risks of soil heavy metals. However, the lithology of bedrock can cause significant spatial variation in the natural background of soil elements, posing considerable difficulties in estimating background values. In this study, an attempt was made to calculate the natural background through regression analysis of soil chemical composition, and reasonably evaluate the impact of lithology. A total of 1771 surface soil samples were collected from the Songhua River Basin, China, for chemical composition analysis, and the partial least square regression (PLSR) method was employed to establish the relationship between heavy metals (As, Hg, Cr, Cd, Pb, Cu, Zn, and Ni) and soil chemical composition/environmental parameters (SiO, AlO, TFeO, MgO, CaO, KO, NaO, La, Y, Zr, V, Sc, Sr, Li and pH). The result shows that As, Cr, Pb, Cu, Zn, and Ni have significant linear relationships with soil chemical composition. Each of these six heavy metals obtained 1771 regression background values; some were higher than the uniform background value obtained from the boxplot, while others were lower. The regression background values recognized not only subtle anthropogenic inputs and potential ecological risks in low-background regions but also spurious contamination in high-background areas. All these indicate that the PLSR method can effectively improve the determination accuracy of the natural background of soil heavy metals. More attention should be paid to the serious anthropogenic inputs appearing in some places of the study area.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.170695DOI Listing

Publication Analysis

Top Keywords

heavy metals
20
natural background
16
background soil
12
soil heavy
12
anthropogenic inputs
12
background values
12
soil chemical
12
chemical composition
12
partial square
8
square regression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!