Aqueous film forming foams (AFFFs) have been used to extinguish fires since the 1960s, leading to widespread subsurface contamination by per- and polyfluoroalkyl substances (PFAS), an essential component of AFFF. This study presents 1-D simulations of PFAS migration in the vadose zone resulting from AFFF releases. Simulation scenarios used soil profiles from three US Air Force (USAF) installations, encompassing a range of climatic conditions and hydrogeologic environments. A three-component mixture, representative of major constituents of AFFF, facilitated the exploration of competitive and synergistic effects of co-constituents on PFAS migration. To accurately capture unsaturated transport of PFAS in porous media, the model considers (1) surfactant-induced flow, (2) non-linear sorption to the solid phase, (3) competitive accumulation at the air-water interface, and (4) the moisture-dependence of the air-water interfacial area. Defined PFAS releases were consistent with fire training exercises, emergency responses, and accidental spills of record. Simulation results illustrate the importance of hydrogeologic, climatic, geochemical, and AFFF release conditions on PFAS transport and retention. Comparison of field observations and model simulations for Ellsworth AFB indicate that much of the PFOA and PFOS mass is associated with the air-water interface and the solid phase, which limits their migration potential in the vadose zone. Results also show that rates of migration in the aqueous phase are largely controlled by hydrogeologic properties, including recharge rates and hydraulic conductivity. AFFF spill scenarios varying in volume, concentration, and frequency reveal the importance of release characteristics in determining rates of PFAS migration and concentration peaks. Variability is attributed to non-linear sorption processes, where, contrary to simple linear partitioning formulations, transport is strongly affected by the concentration of PFAS species. Simulations also demonstrate the importance of modeling the AFFF as a mixture since competitive interfacial accumulation effects are shown to enhance the mobility of less surface-active PFAS compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.170566DOI Listing

Publication Analysis

Top Keywords

vadose zone
12
pfas migration
12
pfas
9
aqueous film
8
film forming
8
release conditions
8
non-linear sorption
8
solid phase
8
air-water interface
8
afff
6

Similar Publications

Global Groundwater Carbon Mass Flux and the Myth of Atmospheric Weathering.

Ground Water

December 2024

Seafloor Science Branch, US Naval Research Laboratory, NRL Code 7432, Stennis Space Center, Hancock County, MS, 39529.

Our recent steady-state mass-balance modeling suggests that most global carbonic-acid weathering of silicate rocks occurs in the vadose zone of aquifer systems not on the surface by atmospheric CO. That is, the weathering solute flux is nearly equal to the total global continental riverine carbon flux, signifying little atmospheric weathering by carbonic acid. This finding challenges previous carbon models that utilize silicate weathering as a control of atmospheric CO levels.

View Article and Find Full Text PDF

Vadose zone flushing of fertilizer tracked by isotopes of water and nitrate.

Vadose Zone J

May 2024

Groundwater Characterization and Remediation Division, US Environmental Protection Agency, Ada, Oklahoma, USA.

A substantial fraction of nitrogen (N) fertilizer applied in agricultural systems is not incorporated into crops and moves below the rooting zone as nitrate (NO ). Understanding mechanisms for soil N retention below the rooting zone and leaching to groundwater is essential for our ability to track the fate of added N. We used dual stable isotopes of nitrate ( N-NO and O-NO ) and water ( O-HO and H-HO) to understand the mechanisms driving nitrate leaching at three depths (0.

View Article and Find Full Text PDF

Infiltration depth, rooting depth, and regolith flushing-A global perspective.

PNAS Nexus

December 2024

CRETUS, Non-Linear Physics Group, Faculty of Physics, Universidade de Santiago de Compostela, Galicia 15782, Spain.

In the vegetation root zone, infiltration () parts in two directions with distinct Earth-system functions. One goes up as evapotranspiration ( + ), returning to the atmosphere (short-circuiting) and affecting short-term weather/climate and the carbon cycle. The other goes down as deep drainage (), flushing the regolith, mobilizing nutrients/contaminates and dissolved minerals into aquifers and rivers, eventually reaching the ocean (long-circuiting) thus regulating global biogeochemical cycles and long-term climate.

View Article and Find Full Text PDF

Seasonal water level fluctuations in rivers significantly influenced the cross-media migration, transformation, and risk diffusion of antibiotics from the vadose zone into groundwater. This study developed a coupled model integrating machine learning (ML) with HYDRUS-3D and GMS to accurately predict sulfamethazine migration under dynamic water levels. The predictive accuracy (E≥0.

View Article and Find Full Text PDF

Additional sources of salinity and heavy metals from plant residues of peaty horizons in the Po River lowland (Italy).

Sci Total Environ

December 2024

SIMAU - Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche 12, 60131 Ancona, Italy. Electronic address:

Article Synopsis
  • The Po River lowland in Italy is experiencing soil and water salinization due to saline groundwater seepage, primarily influenced by paleo-saline porewaters in soil layers.
  • A 2-hectare agricultural field, located below sea level and facing reduced crop yields, was studied using soil samples to analyze salinity levels and water availability.
  • Findings revealed an average porewater salinity of 8.2 g/L, with connections between trace elements and saline soil layers, and suggested that plant tissue fragments could be a long-term source of salinization, overlooked in previous studies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!