The recovery of rare earth elements (REEs) including neodymium (Nd) and dysprosium (Dy) from NdFeB permanent magnets has become one of the main ways to solve the increased demand for rare earth. Herein, n-dodecyl phosphate (DPPA) was used for the first time as the adsorption functional group donor, sodium alginate as the substrate, and calcium chloride solution as the reactive solvent, a hybrid hydrogel adsorbent DPPA/CaALG was synthesized by sol-gel method for application in the adsorption and separation of Nd and Dy from the Co-Nd-Dy ternary system. SEM-EDS, and N adsorption-desorption analysis showed the successful preparation of DDPA/CaALG with mesoporous structure. Batch experiments showed the superiority of the hybrid hydrogel for the good selective adsorption of Nd and Dy, such as large adsorption capacity (Nd: 162.5 mg/g, Dy: 183.5 mg/g), and no adsorption for Co. FT-IR, XPS showed that PO and P-O groups are involved in the adsorption process of Nd and Dy as electron acceptors, where the ion exchange of P-OH is dominant. Furthermore, the chemical properties of ligands and complexes were analyzed by Density Functional Theory (DFT) calculations and revealed their adsorption behaviors as well as the competition between different metal ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.120283 | DOI Listing |
Environ Res
January 2025
Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, 710021 Xi'an, China.
For the effective removal of phenol from the environment, photocatalytic synergistic adsorption is currently one of the key methods. By leveraging the polysaccharide backbone structure of sodium alginate (SA),Zinc hydroxystannate (ZHS) was introduced into the gel structure using a co-precipitation technique. Additionally, gangue waste was repurposed through a polymerization reaction.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou, 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou, 213164, China. Electronic address:
Erythromycin is becoming one of the most common contaminants detected in surface water and wastewater, which poses a potential risk to ecological systems and human health. Until now, there is still no effective way to eliminate it. Herein, a novel and efficient erythromycin-degrading fungus Peniophora incarnata F1, capable of utilizing erythromycin as its sole source of carbon and energy, was isolated from contaminated sludge.
View Article and Find Full Text PDFJ Liposome Res
January 2025
SiteDel Group, Department of Pharmacy, University of Oslo, Blindern, Oslo, Norway.
In this study, liposomes consisting of soybean phosphatidyl choline (SoyPC) and different molar concentrations (10 mol% and 20 mol%) of dioleoyl trimethylammoniumpropane (DOTAP) were prepared by the thin film hydration method and coated with sodium hyaluronate (NaHA) of different MWs (8-15 kDa, 30-50 kDa and 90-130 kDa) and concentrations (0.01-0.2% w/w) using phosphate buffer (PB) or glycerol phosphate buffer (G-PB) as the hydration medium.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.
Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland.
Alginate hydrogels have gathered significant attention in biomedical engineering due to their remarkable biocompatibility, biodegradability, and ability to encapsulate cells and bioactive molecules, but much less has been reported on the kinetics of gelation. Scarce experimental data are available on cross-linked alginates (AL) with bioactive components. The present study addressed a novel method for defining the crosslinking mechanism using rheological measurements for aqueous mixtures of AL and calcium chloride (CaCl) with the presence of hydroxyapatite (HAp) as filler particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!