Repurposing sodium stibogluconate as an uracil DNA glycosylase inhibitor against prostate cancer using a time-resolved oligonucleotide-based drug screening platform.

Bioorg Chem

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Macao Centre for Research and Development in Chinese Medicine, University of Macau, Taipa, Macau, China; MoE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa, Macau, China. Electronic address:

Published: March 2024

Repurposing drugs can significantly reduce the time and costs associated with drug discovery and development. However, many drug compounds possess intrinsic fluorescence, resulting in aberrations such as auto-fluorescence, scattering and quenching, in fluorescent high-throughput screening assays. To overcome these drawbacks, time-resolved technologies have received increasing attention. In this study, we have developed a rapid and efficient screening platform based on time-resolved emission spectroscopy in order to screen for inhibitors of the DNA repair enzyme, uracil-DNA glycosylase (UDG). From a database of 1456 FDA/EMA-approved drugs, sodium stibogluconate was discovered as a potent UDG inhibitor. This compound showed synergistic cytotoxicity against 5-fluorouracil-resistant cancer cells. This work provides a promising future for time-resolved technologies for high-throughput screening (HTS), allowing for the swift identification of bioactive compounds from previously overlooked scaffolds due to their inherent fluorescence properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2024.107176DOI Listing

Publication Analysis

Top Keywords

sodium stibogluconate
8
screening platform
8
high-throughput screening
8
time-resolved technologies
8
repurposing sodium
4
stibogluconate uracil
4
uracil dna
4
dna glycosylase
4
glycosylase inhibitor
4
inhibitor prostate
4

Similar Publications

This study aims to identify the most sensitive colorimetric test for assessing intracellular drug susceptibility of Leishmania tropica to conventional antileishmanial drugs. To this end, the efficacy of four colorimetric methods-MTT, XTT, MTS, and WST-8-was compared using reference L. tropica promastigotes.

View Article and Find Full Text PDF

Introduction: Cutaneous leishmaniasis (CL) is a common protozoan disease in Iraq characterized by localized ulcers, primarily on exposed skin. This study aimed to investigate the hematological parameters of infected patients using a complete blood count (CBC) in the endemic area of Diyala Governorate, northeast of Baghdad. This has been studied in newly diagnosed, untreated individuals and patients receiving sodium antimony gluconate.

View Article and Find Full Text PDF

Post-kala-azar dermal leishmaniasis (PKDL) is a neglected skin disease that has tremendous epidemiological significance as a reservoir of Leishmania parasites. Relapse, drug resistance, non-compliance to prolonged treatment, poor health-seeking behaviour, along with limited therapeutic options pose a significant impact on the management of PKDL. In this study, we aimed to review the efficacy, safety and tolerability data of combination therapies for PKDL in the published literature.

View Article and Find Full Text PDF

Background: Mucosal leishmaniasis (ML) is a deforming type of American Tegumentary Leishmaniasis caused by () that frequently does not respond to treatment. Despite its relapsing clinical course, few parasites are usually found in mucosal lesions. Host and parasite factors may be responsible for this paradox in the pathogenesis of the disease, allowing for both a low parasite burden and the inability of the host to clear and eliminate the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!