Exosomes, nanoscale extracellular vesicles crucial for intercellular communication, hold great promise as a therapeutic avenue in cell-free tissue regeneration. In this study, we identified and utilized exosomes to adorn anodized titanium scaffolds, inducing osteogenic differentiation in human dental pulp stem cells (hDPSCs). The osteogenesis of hDPSCs was stimulated by exosomes derived from hDPSCs that underwent various periods of osteogenic differentiation. After purification, these exosomes were loaded onto anodized titanium scaffolds. Notably, the scaffolds loaded with exosomes deriving from osteogenic differentiated hDPSCs demonstrated superior bone tissue regeneration compared to those loaded with exosomes deriving from hDPSCs within 10-week. RNA-sequencing analysis shed light on the underlying mechanism, revealing that the osteogenic exosomes carried specific cargo, which is due to upregulated miRNAs (Hsa-miR-29c-5p, Hsa-miR-378a-5p, Hsa-miR-10b-5p and Hsa-miR-9-3p) associated with osteogenesis. And down-regulated anti-osteogenic miRNA (Hsa-miR-31-3p, Hsa-miR-221-3p, Hsa-miR-183-5p and Hsa-miR-503-5p). In conclusion, the identification and utilization of exosomes derived from osteogenic differentiated stem cells offer a novel and promising strategy for achieving cell-free bone regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2024.113775 | DOI Listing |
J Biomed Mater Res A
January 2025
Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).
View Article and Find Full Text PDFBurns Trauma
January 2025
Research Group of Immune Cell Communication, Department of Immune Medicine, Universitätsklinikum Regensburg | UKR, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
Effective wound management and treatment are crucial in clinical practice, yet existing strategies often fall short in fully addressing the complexities of skin wound healing. Recent advancements in tissue engineering have introduced innovative approaches, particularly through the use of nanobiomaterials, to enhance the healing process. In this context, titanium dioxide nanoparticles (TiO NPs) have garnered attention due to their excellent biological properties, including antioxidant, anti-inflammatory, and antimicrobial properties.
View Article and Find Full Text PDFBiomater Transl
September 2024
Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan Province, China.
The treatment and repair of bone tissue damage and loss due to infection, tumours, and trauma are major challenges in clinical practice. Artificial bone scaffolds offer a safer, simpler, and more feasible alternative to bone transplantation, serving to fill bone defects and promote bone tissue regeneration. Ideally, these scaffolds should possess osteoconductive, osteoinductive, and osseointegrative properties.
View Article and Find Full Text PDFStem Cells Transl Med
December 2024
Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, United States.
The use of dental implants to replace lost or damaged teeth has become increasingly widespread due to their reported high survival and success rates. In reality, the long-term survival of dental implants remains a health concern, based on their short-term predicted survival of ~15 years, significant potential for jawbone resorption, and risk of peri-implantitis. The ability to create functional bioengineered teeth, composed of living tissues with properties similar to those of natural teeth, would be a significant improvement over currently used synthetic titanium implants.
View Article and Find Full Text PDFScaffolds are of great interest in tissue engineering associated with regenerative medicine owing to their ability to mimic biological structures and provide support for new tissue formation. Several techniques are used to produce biological scaffolds; among them, far-field electrospinning (FFES) process is widely used due to its versatility in producing promising structures similar to native tissues owing to the electrospun nanofibers. On the other hand, near-field electrospinning (NFES) has been investigated due to the possibility of creating scaffolds with suitable architecture for their use in specific biological tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!