The spatial distribution of coupling between tau and neurodegeneration in amyloid-β positive mild cognitive impairment.

Neurobiol Aging

Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:

Published: April 2024

Synergies between amyloid-β (Aβ), tau, and neurodegeneration persist along the Alzheimer's disease (AD) continuum. This study aimed to evaluate the extent of spatial coupling between tau and neurodegeneration (atrophy) and its relation to Aβ positivity in mild cognitive impairment (MCI). Data from 409 participants were included (95 cognitively normal controls, 158 Aβ positive (Aβ+) MCI, and 156 Aβ negative (Aβ-) MCI). Florbetapir PET, Flortaucipir PET, and structural MRI were used as biomarkers for Aβ, tau and atrophy, respectively. Individual correlation matrices for tau load and atrophy were used to layer a multilayer network, with separate layers for tau and atrophy. A measure of coupling between corresponding regions of interest (ROIs) in the tau and atrophy layers was computed, as a function of Aβ positivity. Fewer than 25% of the ROIs across the brain showed heightened coupling between tau and atrophy in Aβ+ , relative to Aβ- MCI. Coupling strengths in the right rostral middle frontal and right paracentral gyri, in particular, mediated the association between Aβ burden and cognition in this sample.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940182PMC
http://dx.doi.org/10.1016/j.neurobiolaging.2024.01.014DOI Listing

Publication Analysis

Top Keywords

tau atrophy
16
coupling tau
12
tau neurodegeneration
12
tau
8
mild cognitive
8
cognitive impairment
8
aβ tau
8
aβ positivity
8
aβ- mci
8
7

Similar Publications

Nutrition: A non-negligible factor in the pathogenesis and treatment of Alzheimer's disease.

Alzheimers Dement

January 2025

Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Xicheng District, Beijing, China.

Alzheimer's disease (AD) is a degenerative disease characterized by progressive cognitive dysfunction. The strong link between nutrition and the occurrence and progression of AD pathology has been well documented. Poor nutritional status accelerates AD progress by potentially aggravating amyloid beta (Aβ) and tau deposition, exacerbating oxidative stress response, modulating the microbiota-gut-brain axis, and disrupting blood-brain barrier function.

View Article and Find Full Text PDF

Introduction: The generalizability of neuroimaging and cognitive biomarkers in their sensitivity to detect preclinical Alzheimer's disease (AD) and power to predict progression in large, multisite cohorts remains unclear.

Method: Longitudinal demographics, T1-weighted magnetic resonance imaging (MRI), and cognitive scores of 3036 cognitively unimpaired (CU) older adults (amyloid beta [Aβ]-negative/positive [A-/A+]: 1270/1558) were included. Cross-sectional and longitudinal cognition and medial temporal lobe (MTL) structural measures were extracted.

View Article and Find Full Text PDF

Background: Degeneration of the basal forebrain cholinergic system is a hallmark feature shared by Alzheimer's disease (AD) and Lewy body disease (LBD) whereas hippocampus atrophy is more specifically related to AD. We aimed to investigate the relationship between basal forebrain and hippocampus atrophy, cognitive decline, and neuropathology in a large autopsy sample.

Methods: Data were obtained from the National Alzheimer's Coordinating Center (NACC).

View Article and Find Full Text PDF

Background: α-Synuclein (α-Syn) pathology is present in 30-50 % of Alzheimer's disease (AD) patients, and its interactions with tau proteins may further exacerbate pathological changes in AD. However, the specific role of different aggregation forms of α-Syn in the progression of AD remains unclear.

Objectives: To explore the relationship between various aggregation types of CSF α-Syn and Alzheimer's disease progression.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease (AD) patients with higher educational attainment (EA) often exhibit better cognitive function. However, the relationship among EA status, AD pathology, structural brain reserve, and cognitive decline requires further investigation.

Methods: We compared cognitive performance across different amyloid beta (Aβ) positron emission tomography (A ±) statuses and EA levels (High EA/Low EA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!