This study applied and validated the Multiplex-PCR method to identify the authenticity of duck blood and four common adulterated animal blood varieties. To this end, the genomic DNAs of duck blood and its counterfeit products were extracted using an efficient high-throughput extraction method. Specific primers were designed using the cytochrome b gene. The reaction system and conditions of a multiplex (namely, Five-plex) PCR were optimized, and the proposed methodology was verified, proving its good specificity, repeatability, and sensitivity. The Five-plex PCR system detected nine duck blood samples sold in the local market, revealing the adulteration of duck blood products. The Multiplex-PCR system can accurately and quickly detect adulterated animal blood in duck blood products, effectively finding counterfeits and identifying the authenticity of genuine duck blood products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.138673 | DOI Listing |
Poult Sci
December 2024
Animal Sciences, Purdue University, West Lafayette, IN, USA. Electronic address:
We tested Pekin ducks with playbacks of 5 different vocalizations plus a no noise and white noise stimulus as our controls (N = 15 ducks/sex/treatment). The "AM long" call is a common vocalization made by both sexes. "Honk" is also produced by both sexes and is thought to be an alarm or distress call.
View Article and Find Full Text PDFPoult Sci
December 2024
Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand, 10330. Electronic address:
Duck Tembusu virus (DTMUV), an emerging avian pathogenic flavivirus, is notably associated with neurological disorders and acute egg drop syndrome in ducks. We previously demonstrated that the susceptibility of ducks to DTMUV infection varies significantly with age, with younger ducks (4-week-old) exhibiting more severe disease than older ducks (27-week-old). However, the immunological mechanisms underlying these age-related differences in disease severity remain unclear.
View Article and Find Full Text PDFPoult Sci
December 2024
Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China. Electronic address:
Tembusu virus (TMUV) is a significant pathogen that poses a considerable threat to the waterfowl farming industry in China and is classified into three distinct genetic clusters. In 2024, a suspected outbreak of TMUV infection was reported at a goose farm in Guangdong Province, China. A strain of TMUV, designated GDE19-2024, was successfully isolated using chicken embryos.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand. Electronic address:
Vet Res
December 2024
National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
The duck CD8 T-cell response effectively defends against H5N1 highly pathogenic avian influenza virus (HPAIV) infection, but the recognized peptide is rarely identified. Here, we found that the ratio of CD8 T cells and the expression of IFN-γ and cytotoxicity-associated genes, including granzyme A/K, perforin and IL2, at 7 days post-infection in peripheral blood mononuclear cells (PBMCs) from B1 haplotype ducks significantly increased in the context of defending against H5N1 AIV infection in vivo. Moreover, similar results were observed in cultured and sorted H5N1 AIV-stimulated duck CD8 T cells in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!