Study Objectives: Isolated rapid eye movement sleep behavior disorder (iRBD) is a prodromal stage of α-synucleinopathies and eventually phenoconverts to overt neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Associations of baseline resting-state electroencephalography (EEG) with phenoconversion have been reported. In this study, we aimed to develop machine learning models to predict phenoconversion time and subtype using baseline EEG features in patients with iRBD.

Methods: At baseline, resting-state EEG and neurological assessments were performed on patients with iRBD. Calculated EEG features included spectral power, weighted phase lag index, and Shannon entropy. Three models were used for survival prediction, and four models were used for α-synucleinopathy subtype prediction. The models were externally validated using data from a different institution.

Results: A total of 236 iRBD patients were followed up for up to 8 years (mean 3.5 years), and 31 patients converted to α-synucleinopathies (16 PD, 9 DLB, 6 MSA). The best model for survival prediction was the random survival forest model with an integrated Brier score of 0.114 and a concordance index of 0.775. The K-nearest neighbor model was the best model for subtype prediction with an area under the receiver operating characteristic curve of 0.901. Slowing of the EEG was an important feature for both models.

Conclusions: Machine learning models using baseline EEG features can be used to predict phenoconversion time and its subtype in patients with iRBD. Further research including large sample data from many countries is needed to make a more robust model.

Download full-text PDF

Source
http://dx.doi.org/10.1093/sleep/zsae031DOI Listing

Publication Analysis

Top Keywords

machine learning
12
learning models
12
phenoconversion time
12
time subtype
12
eeg features
12
isolated rapid
8
rapid eye
8
eye movement
8
movement sleep
8
sleep behavior
8

Similar Publications

GnRH pulse generator activity in mouse models of polycystic ovary syndrome.

Elife

January 2025

Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.

One in ten women in their reproductive age suffer from polycystic ovary syndrome (PCOS) that, alongside subfertility and hyperandrogenism, typically presents with increased luteinizing hormone (LH) pulsatility. As such, it is suspected that the arcuate kisspeptin (ARN) neurons that represent the GnRH pulse generator are dysfunctional in PCOS. We used here in vivo GCaMP fiber photometry and other approaches to examine the behavior of the GnRH pulse generator in two mouse models of PCOS.

View Article and Find Full Text PDF

To use electronic health record (EHR) data to develop a scalable and transferrable model to predict 6-month risk for diabetic ketoacidosis (DKA)-related hospitalization or emergency care in youth with type 1 diabetes (T1D). To achieve a sharable predictive model, we engineered features using EHR data mapped to the T1D Exchange Quality Improvement Collaborative's (T1DX-QI) data schema used by 60+ U.S.

View Article and Find Full Text PDF

Spontaneous intracranial artery dissection (sIAD) is the leading cause of stroke in young individuals. Identifying high-risk sIAD cases that exhibit symptoms and are likely to progress is crucial for treatment decision-making. This study aimed to develop a model relying on circulating biomarkers to discriminate symptomatic sIADs.

View Article and Find Full Text PDF

Blood pressure (BP) is one of the vital physiological parameters, and its measurement is done routinely for almost all patients who visit hospitals. Cuffless BP measurement has been of great research interest over the last few years. In this paper, we aim to establish a method for cuffless measurement of BP using ultrasound.

View Article and Find Full Text PDF

Metabolism in vivo turns small molecules (e.g., drugs) into metabolites (new molecules), which brings unexpected safety issues in drug development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!