Oxygen isotope ensemble reveals Earth's seawater, temperature, and carbon cycle history.

Science

Te Aka Mātuatua, University of Waikato (Tauranga), Bay of Plenty, Tauranga, New Zealand.

Published: February 2024

Earth's persistent habitability since the Archean remains poorly understood. Using an oxygen isotope ensemble approach-comprising shale, iron oxide, carbonate, silica, and phosphate records-we reconcile a multibillion-year history of seawater δO, temperature, and marine and terrestrial clay abundance. Our results reveal a rise in seawater δO and a temperate Proterozoic climate distinct to interpretations of a hot early Earth, indicating a strongly buffered climate system. Precambrian sediments are enriched in marine authigenic clay, with prominent reductions occurring in concert with Paleozoic and Cenozoic cooling, the expansion of siliceous life, and the radiation of land plants. These findings support the notion that shifts in the locus and extent of clay formation contributed to seawater O enrichment, clement early Earth conditions, major climate transitions, and climate stability through the reverse weathering feedback.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.adg1366DOI Listing

Publication Analysis

Top Keywords

oxygen isotope
8
isotope ensemble
8
seawater δo
8
early earth
8
ensemble reveals
4
reveals earth's
4
seawater
4
earth's seawater
4
seawater temperature
4
temperature carbon
4

Similar Publications

Whether metazoan diversification during the Cambrian Radiation was driven by increased marine oxygenation remains highly debated. Repeated global oceanic oxygenation events have been inferred during this interval, but the degree of shallow marine oxygenation and its relationship to biodiversification and clade appearance remain uncertain. To resolve this, we interrogate an interval from ~527 to 519 Ma, encompassing multiple proposed global oceanic oxygenation events.

View Article and Find Full Text PDF

Magnesium ions regulate the Warburg effect to promote the differentiation of enteric neural crest cells into neurons.

Stem Cell Res Ther

January 2025

Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China.

Background: Understanding how enteric neural crest cells (ENCCs) differentiate into neurons is crucial for neurogenesis therapy and gastrointestinal disease research. This study explores how magnesium ions regulate the glycolytic pathway to enhance ENCCs differentiation into neurons.

Materials And Methods: We used polymerase chain reaction, western blot, immunofluorescence, and multielectrode array techniques to assess magnesium ions' impact on ENCCs differentiation.

View Article and Find Full Text PDF

Charosphere, a highly active zone between biochar and surrounding soil, is widely present in agricultural and wildfire-affected soils, yet whether reactive oxygen species (ROS) are produced within the charosphere remains unclear. Herein, the production and spatiotemporal evolution of charosphere ROS were explored. In situ ROS capture visualized a gradual decrease in ROS production with increasing distance from the biochar/soil interface.

View Article and Find Full Text PDF

Megalithism has been repetitively tied to specialised herding economies in Iberia, particularly in the mountainous areas of the Basque Country. Legaire Sur, in the uplands of Álava region, is a recently excavated passage tomb (megalithic monument) that held a minimum number of 25 individuals. This study analysed the carbon, nitrogen, oxygen, and strontium isotope ratios of 18 individuals, in a multi-tissue sampling study (successional tooth enamel sampling, incremental dentine sampling, and bulk bone collagen sampling).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!