A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimal performance of stand-alone hybrid microgrid systems based on integrated techno-economic-environmental energy management strategy using the grey wolf optimizer. | LitMetric

Recently, global interest in organizing the functioning of renewable energy resources (RES) through microgrids (MG) has developed, as a unique approach to tackle technical, economic, and environmental difficulties. This study proposes implementing a developed Distributable Resource Management strategy (DRMS) in hybrid Microgrid systems to reduce total net percent cost (TNPC), energy loss (Ploss), and gas emissions (GEM) while taking the cost-benefit index (CBI) and loss of power supply probability (LPSP) as operational constraints. Grey Wolf Optimizer (GWO) was utilized to find the optimal size of the hybrid Microgrid components and calculate the multi-objective function with and without the proposed management method. In addition, a detailed sensitivity analysis of numerous economic and technological parameters was performed to assess system performance. The proposed strategy reduced the system's total net present cost, power loss, and emissions by (1.06%), (8.69%), and (17.19%), respectively compared to normal operation. Firefly Algorithm (FA) and Particle Swarm Optimization (PSO) techniques were used to verify the results. This study gives a more detailed plan for evaluating the effectiveness of hybrid Microgrid systems from a technical, economic, and environmental perspective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10852242PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298094PLOS

Publication Analysis

Top Keywords

hybrid microgrid
16
microgrid systems
12
management strategy
8
grey wolf
8
wolf optimizer
8
technical economic
8
economic environmental
8
total net
8
optimal performance
4
performance stand-alone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!