Transcriptomic profiles of Mannheimia haemolytica planktonic and biofilm associated cells.

PLoS One

Ruminant Diseases and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, United States of America.

Published: February 2024

Mannheimia haemolytica is the principal agent contributing to bovine respiratory disease and can form biofilms with increased resistance to antibiotic treatment and host immune defenses. To investigate the molecular mechanisms underlying M. haemolytica biofilm formation, transcriptomic analyses were performed with mRNAs sequenced from planktonic and biofilm cultures of pathogenic serotypes 1 (St 1; strain D153) and St 6 (strain D174), and St 2 (strain D35). The three M. haemolytica serotypes were cultured in two different media, Roswell Park Memorial Institute (RPMI) 1640 and brain heart infusion (BHI) to form the biofilms. Transcriptomic analyses revealed that the functions of the differentially expressed genes (DEGs) in biofilm associated cells were not significantly affected by the two media. A total of 476 to 662 DEGs were identified between biofilm associated cells and planktonic cells cultured under BHI medium. Functional analysis of the DEGs indicated that those genes were significantly enriched in translation and many biosynthetic processes. There were 234 DEGs identified in St 1 and 6, but not in St 2. The functions of the DEGs included structural constituents of ribosomes, transmembrane proton transportation, proton channels, and proton-transporting ATP synthase. Potentially, some of the DEGs identified in this study provide insight into the design of new M. haemolytica vaccine candidates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10852253PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297692PLOS

Publication Analysis

Top Keywords

biofilm associated
12
associated cells
12
degs identified
12
mannheimia haemolytica
8
planktonic biofilm
8
form biofilms
8
transcriptomic analyses
8
degs
6
haemolytica
5
biofilm
5

Similar Publications

Interaction between bacterial adhesins leads to coaggregation by the oral bacteria and .

mBio

January 2025

Antimicrobial Resistance, Omics and Microbiota Group, Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom.

is an unusual diderm firmicute that plays a central role in the formation of dental biofilm formation through coaggregation with many other oral bacteria. However, the molecular interactions leading to oral biofilm formation are largely unknown. In a recent study (L.

View Article and Find Full Text PDF

Lactams Exhibit Potent Antifungal Activity Against Monospecies and Multispecies Interkingdom Biofilms on a Novel Hydrogel Skin Model.

APMIS

January 2025

Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK.

Infections of intact and damaged skin barriers and keratin are frequently associated with complex biofilm communities containing bacteria and fungi, yet there are limited options for successful management. This study intended to focus on the utility of some novel proprietary lactam molecules, quorum sensing (QS)-derived halogenated furanones, which act to block the QS pathway, against key fungal pathogens of the skin (Candida albicans, Malassezia furfur and Microsporum gypseum). Moreover, we aimed to assess how these actives performed against complex interkingdom biofilms in a clinically relevant model.

View Article and Find Full Text PDF

The human body houses many distinct and interconnecting microbial populations with long-lasting systemic effects, where the oral cavity serves as a pathogens' reservoir. The correlation of different disease states strongly supports the need to understand the interplay between the oral tissue niche and microbiome. Despite efforts, the recapitulation of gingival architecture and physiological characteristics of the periodontal niche has yet to be accomplished by traditional cultural strategies.

View Article and Find Full Text PDF

We have previously demonstrated that subgingival levels of nitrate-reducing bacteria, as well as the in vitro salivary nitrate reduction capacity (NRC), were diminished in periodontitis patients, increasing after periodontal treatment. However, it remains unclear if an impaired NRC in periodontitis can affect systemic health. To determine this, the effect of nitrate-rich beetroot juice (BRJ) on blood pressure was determined in 15 periodontitis patients before and 70 days after periodontal treatment (i.

View Article and Find Full Text PDF

Unveiling the Role of Rubber Seals in the Generation of Decentralized Disinfection By-Products in Chlorinated Water Distribution Systems.

Chemosphere

January 2025

University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address:

The degradation of rubber seal (RS), particularly ethylene-propylene-diene (EPDM), in the drinking water networks has been confirmed, yet the role of RS as a disinfection by-product (DBP) precursor remains unknown. This study provides explicit proof of the formation of halogenated disinfection by-products (X-DBPs) from RS in chlorinated drinking water within water supply systems. Over time, exposure to chlorinated water ages RS, releasing high levels of organic compounds, which act as DBP precursors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!