Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Establishing a chemical reactivity theory in density functional theory (DFT) language has been our intense research interest in the past two decades, exemplified by the determination of steric effect and stereoselectivity, evaluation of electrophilicity and nucleophilicity, identification of strong and weak interactions, and formulation of cooperativity, frustration, and principle of chirality hierarchy. In this Featured Article, we first overview the four density-based frameworks in DFT to appreciate chemical understanding, including conceptual DFT, use of density associated quantities, information-theoretic approach, and orbital-free DFT, and then present a few recent advances of these frameworks as well as new applications from our studies. To that end, we will introduce the relationship among these frameworks, determining the entire spectrum of interactions with Pauli energy derivatives, performing topological analyses with information-theoretic quantities, and extending the density-based frameworks to excited states. Applications to examine physiochemical properties in external electric fields and to evaluate polarizability for proteins and crystals are discussed. A few possible directions for future development are followed, with the special emphasis on its merger with machine learning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.3c07997 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!