Plants have diverse and vast niches colonized by endophytic microorganisms that promote the wellbeing of host plant. These microbes inhabit internal plant tissues with no signs of ill health. Bacterial endophytes from many plants have been isolated and characterized due to their beneficial roles however their diversity in leguminous plants still remain unexploited. Diversity of bacterial endophytes isolated from Sesbania sesban, Leucaena diversifolia and Calliandra calothyrsus was assessed using morphological and molecular characteristics. A total of 27 pure isolates were recovered from C. Calothyrsus, L. diversifolia and S. sesban constituting 44.4%, 33.3% and 22.2% from the leaves, stems and roots respectively. The isolates differentiated into Gram positive and negative with rods and spherical shapes. Analysis of 16S rRNA gene sequences revealed 8 closely related bacterial genera that consisted of Bacillus (33.3%), Staphylococcus (22.2%), Alcaligens (11.1%), Pantoea (11.1%), Xanthomonas,and Sphingomonas (7.4%) each. Others included Acinetobacter, and Pseudomonas at 3.7% each. Bacterial endophytes of genus bacillus were isolated from all the three plants. These results indicate the presence of high diversity of endophytic bacteria associated with the different parts of L. diversifolia, S. sesban and C. salothyrsus growing in western Kenya.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853127 | PMC |
http://dx.doi.org/10.1186/s13568-024-01676-6 | DOI Listing |
Curr Microbiol
January 2025
Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
Abies pindrow, a vital conifer in the Kashmir Himalayan forests, faces threats from low regeneration rates, deforestation, grazing, and climate change, highlighting the urgency for restoration efforts. In this context, we investigated the diversity of potential culturable seed endophytes in A. pindrow, assessed their plant growth-promoting (PGP) activities, and their impact on seed germination and seedling growth.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Center for Natural Product Systems Biology, Institute of Natural Product, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea.
Genome mining is a promising avenue for expanding the repertoire of microbial natural products, which are important for drug development. This approach involves predicting genetically encoded small molecules by examining bacterial genomes via accumulated knowledge of microbial biosynthesis. However, it is also important that the microbes produce the predicted molecule in practice.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.
Legumes are well-known for symbiotic nitrogen fixation, whereas associative nitrogen fixation for nonlegume plants needs more attention. Most associative nitrogen-fixing bacteria are applied in their original plant species and need further study for broad adaptation. Additionally, if isolated nitrogen-fixing bacteria could function under fertilizer conditions, it is often ignored.
View Article and Find Full Text PDFArch Microbiol
January 2025
Agricultural Botany Department, Faculty of Agriculture, Suez Canal University, 41522, Ismailia, Egypt.
Researchers have reported that Bacillus megaterium BM18-2 reduces Cd toxicity in Hybrid Pennisetum, but understanding the interaction between plants and associated endophytes is crucial for understanding phytoremediation strategies under heavy metal stress. The current study aims to monitor the colonization patterns of GFP-labeled endophytic bacteria BM18-2 on Hybrid Pennisetum grass. Additionally, it will monitor Cd's effect on plant bacterial colonization.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, India.
Aim: Bacillus subtilis is usually found in soil, and their biocontrol and plant growth promoting capabilities are being explored more recently than ever. However, knowledge about metabolite production and genome composition of endophytic Bacillus subtilis from seeds is limited. In the present study, Bacillus subtilis EVCu15 strain isolated from the seeds of Vasconcellea cundinamarcensis (mountain papaya) was subjected to whole genome sequencing, and detailed molecular and functional characterization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!