Two-Dimensional Room-Temperature Magnetism in Janus MnIS and CrISe Monolayers with Tunable Magnetic Properties by Strain Engineering.

ACS Appl Mater Interfaces

National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.

Published: February 2024

Exploring room-temperature intrinsic magnetism in two-dimensional (2D) materials for nanoscale spintronic devices has garnered significant interest. Achieving a high Curie temperature and substantial spin polarization in 2D ferromagnetic materials remains challenging. Drawing inspiration from the substantial enhancement of the Curie temperature observed in ferromagnetic CrIS monolayers by manipulating the covalent nature of Cr-S bonds, our study systematically delves into the electronic structure and magnetic properties of Janus MXY (M = V, Cr, Mn, Fe, and Co; X = Cl, Br, I; Y = S, Se, and Te) monolayers through first-principles calculations. Our findings reveal that 15 kinds of these monolayers exhibit dynamic and thermodynamic stability while displaying diverse electronic and ferromagnetic characteristics. Notably, MnIS demonstrates half-metallicity and in-plane magnetic anisotropy, while CrISe exhibits a half-semiconductor and perpendicular magnetic anisotropy. Consequently, MnIS transforms from in-plane to perpendicular magnetic anisotropy through strain manipulation. CrISe, under strain, transforms from a half-semiconductor to a bipolar magnetic semiconductor. The strong coupling caused by the M-Y bonds makes them have a Curie temperature higher than room temperature. The unique magnetic properties exhibited by the 2D Janus MnIS and CrISe magnets hold promise for applications in spintronics. Our study provides a foundational understanding for future experimental explorations in this exciting research area.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c16448DOI Listing

Publication Analysis

Top Keywords

magnetic properties
12
curie temperature
12
magnetic anisotropy
12
janus mnis
8
mnis crise
8
perpendicular magnetic
8
magnetic
7
two-dimensional room-temperature
4
room-temperature magnetism
4
magnetism janus
4

Similar Publications

First principles design of multifunctional spintronic devices based on super narrow borophene nanoribbons.

Sci Rep

January 2025

Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.

Borophene, as a new material with various configurations, has attracted significant research attention in recent years. In this study, the electronic properties of a series of χ-type borophene nanoribbons (BNRs) are investigated using a first-principles approach. The results show that the width and edge pattern of the nanoribbons can effectively tune their electronic properties.

View Article and Find Full Text PDF

Polymorphism and magnetism in a Kitaev honeycomb cobaltate KCoAsO.

Sci Rep

January 2025

Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.

We report the synthesis, crystal structure, and magnetic properties of a new Kitaev honeycomb cobaltate, KCoAsO, which crystallizes in two distinct forms: P2/c and R[Formula: see text] space groups. Magnetic measurements reveal ordering temperatures of ~ 14 K for the P2/c structure and ~ 10.5 K for the R[Formula: see text] structure.

View Article and Find Full Text PDF

Materials with both high thermoelectric (TE) performance and excellent magnetocaloric (MC) properties near room temperature are of great importance for all-solid-state TE/MC hybrid refrigeration. A combination of such two critical characteristics, however, is hardly attainable in single phase compounds. Herein we report a composite material that comprises Bi-Sb-Te thermoelectric and Ni-Mn-In magnetocaloric components as an innovative thermoelectromagnetic material with dual functionalities.

View Article and Find Full Text PDF

Application of bioelectrical impedance detection techniques: Cells and tissues.

Biosens Bioelectron

January 2025

College of Mathematical Medicine, Zhejiang Normal University, Jinhua, China; Affiliated Dongyang Hospital of Wenzhou Medical University, Jinhua, China. Electronic address:

Pathological conditions in organisms often arise from various cellular or tissue abnormalities, including dysregulation of cell numbers, infections, aberrant differentiation, and tissue pathologies such as lung tumors and skin tumors. Thus, developing methods for analyzing and identifying these biological abnormalities presents a significant challenge. While traditional bioanalytical methods such as flow cytometry and magnetic resonance imaging are well-established, they suffer from inefficiencies, high costs, complexity, and potential hazards.

View Article and Find Full Text PDF

The impact of linguistic complexity on feasibility and reliability of language mapping in aphasic glioma patients.

Brain Lang

January 2025

Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany; TUM-Neuroimaging Center, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany; Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany. Electronic address:

Background: Reliable language mappings require sufficient language skills. This study evaluated whether linguistic task properties impact feasibility and reliability of navigated transcranial magnetic stimulation (nTMS)-based language mappings in aphasic glioma patients.

Methods: The effect of linguistic complexity on naming accuracy during baseline testing without stimulation and on the number of errors during nTMS was evaluated for 16 moderately and 4 severely expressive aphasic patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!