A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-etching assembly of designed NiFeMOF nanosheet arrays as high-efficient oxygen evolution electrocatalyst for water splitting. | LitMetric

2D metal-organic frameworks (MOFs) have emerged as potential candidates for electrocatalytic oxygen evolution reactions (OER) due to their inherent properties like abundant coordination unsaturated active sites and efficient charge transfer. Herein, a versatile and massively synthesizable self-etching assembly strategy wherein nickel-iron foam (NFF) acts as a substrate and a metal ion source. Specifically, by etching the nickel-iron foam (NFF) surface using ligands and solvents, Ni/Fe metal ions are activated and subsequently reacted under hydrothermal conditions, resulting in the formation of self-supporting nanosheet arrays, eliminating the need for external metal salts. The obtained 33 % NiFeMOF/NFF exhibits remarkable OER performance with ultra-low overpotentials of 188/231 mV at 10/100 mA cm, respectively, outperforming most recently reported catalysts. Besides, the built 33 % NiFeMOF/NFF||Pt/C electrolyzer presents low cell voltages of 1.55/1.83 V at 10/100 mA cm, superior to the benchmark RuO ||Pt/C, implying good industrialization prospects. The excellent catalytic activity stems from the modulation of the electronic spin state of the Ni active site by the introduction of Fe, which facilitates the adsorption process of oxygen-containing intermediates and thus enhances the OER activity. This innovative approach offers a promising pathway for commercial-scale sustainable energy solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202301607DOI Listing

Publication Analysis

Top Keywords

self-etching assembly
8
nanosheet arrays
8
oxygen evolution
8
nickel-iron foam
8
foam nff
8
assembly designed
4
designed nifemof
4
nifemof nanosheet
4
arrays high-efficient
4
high-efficient oxygen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!