Biofoundry-Scale DNA Assembly Validation Using Cost-Effective High-Throughput Long-Read Sequencing.

ACS Synth Biol

Edinburgh Genome Foundry, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom.

Published: February 2024

AI Article Synopsis

  • * The Edinburgh Genome Foundry has implemented a new quality control method using Oxford Nanopore sequencing technology, along with a software pipeline for detailed analysis of DNA constructs.
  • * The developed protocol allows for rapid validation of plasmids, making it a valuable resource for researchers in genetics, synthetic biology, and sequencing fields.

Article Abstract

Biofoundries are automated high-throughput facilities specializing in the design, construction, and testing of engineered/synthetic DNA constructs (plasmids), often from genetic parts. A critical step of this process is assessing the fidelity of the assembled DNA construct to the desired design. Current methods utilized for this purpose are restriction digest or PCR followed by fragment analysis and sequencing. The Edinburgh Genome Foundry (EGF) has recently established a single-molecule sequencing quality control step using the Oxford Nanopore sequencing technology, along with a companion Nextflow pipeline and a Python package, to perform in-depth analysis and generate a detailed report. Our software enables researchers working with plasmids, including biofoundry scientists, to rapidly analyze and interpret sequencing data. In conclusion, we have created a laboratory and software protocol that validates assembled, cloned, or edited plasmids, using Nanopore long-reads, which can serve as a useful resource for the genetics, synthetic biology, and sequencing communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877595PMC
http://dx.doi.org/10.1021/acssynbio.3c00589DOI Listing

Publication Analysis

Top Keywords

sequencing
6
biofoundry-scale dna
4
dna assembly
4
assembly validation
4
validation cost-effective
4
cost-effective high-throughput
4
high-throughput long-read
4
long-read sequencing
4
sequencing biofoundries
4
biofoundries automated
4

Similar Publications

Evaluation of nationwide analysis surveillance for methicillin-resistant within Genomic Medicine Sweden.

Microb Genom

January 2025

Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, rebro University, rebro, Sweden.

National epidemiological investigations of microbial infections greatly benefit from the increased information gained by whole-genome sequencing (WGS) in combination with standardized approaches for data sharing and analysis. To evaluate the quality and accuracy of WGS data generated by different laboratories but analysed by joint pipelines to reach a national surveillance approach. A national methicillin-resistant (MRSA) collection of 20 strains was distributed to nine participating laboratories that performed in-house procedures for WGS.

View Article and Find Full Text PDF

A Gram-stain-negative, aerobic and rod-shaped bacterium, designated as HZG-20, was isolated from a tidal flat in Zhoushan, Zhejiang Province, China. The 16S rRNA sequence similarities between strain HZG-20 and RR4-56, NNCM2, P31 and X9-2-2 were 98.9, 91.

View Article and Find Full Text PDF

-Iodosuccinimide-promoted cascade reactions of arylidene isoxazolones with amidines in -xylene were accomplished, affording 5-acylimidazoles in good to excellent yields. Interestingly, when the reactions were performed by employing acetonitrile as the solvent, 4-acylimidazoles were efficiently obtained. Mechanistic studies indicate that the formation of imidazolyl and acyl moieties may undergo a spiroannulation-ring opening aromatization-hydrolysis cascade reaction sequence.

View Article and Find Full Text PDF

Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer with a high metastatic rate and high mortality rate. The molecular mechanism of ccRCC development, however, needs further study. Aurora kinase B (AURKB) functions as an important oncogene in various tumors; therefore, in the present study, we aimed to explore the mechanism by which AURKB affects ccRCC development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!