Phosphorylation-Regulated Dynamic Phase Separation of HIP-55 Protects Against Heart Failure.

Circulation

Department of Cardiology and Institute of Vascular Medicine (Y.J., X.N., Y.Z., Y.T., Z.L.), Peking University Third Hospital, Beijing, China.

Published: September 2024

Background: Heart failure (HF), which is the terminal stage of many cardiovascular diseases, is associated with low survival rates and a severe financial burden. The mechanisms, especially the molecular mechanism combined with new theories, underlying the pathogenesis of HF remain elusive. We demonstrate that phosphorylation-regulated dynamic liquid-liquid phase separation of HIP-55 (hematopoietic progenitor kinase 1-interacting protein of 55 kDa) protects against HF.

Methods: Fluorescence recovery after photobleaching assay, differential interference contrast analysis, pull-down assay, immunofluorescence, and immunohistochemical analysis were used to investigate the liquid-liquid phase separation capacity of HIP-55 and its dynamic regulation in vivo and in vitro. Mice with genetic deletion of HIP-55 and mice with cardiac-specific overexpression of HIP-55 were used to examine the role of HIP-55 on β-adrenergic receptor hyperactivation-induced HF. Mutation analysis and mice with specific phospho-resistant site mutagenesis were used to identify the role of phosphorylation-regulated dynamic liquid-liquid phase separation of HIP-55 in HF.

Results: Genetic deletion of HIP-55 aggravated HF, whereas cardiac-specific overexpression of HIP-55 significantly alleviated HF in vivo. HIP-55 possesses a strong capacity for phase separation. Phase separation of HIP-55 is dynamically regulated by AKT-mediated phosphorylation at S269 and T291 sites, failure of which leads to impairment of HIP-55 dynamic phase separation by formation of abnormal aggregation. Prolonged sympathetic hyperactivation stress induced decreased phosphorylation of HIP-55 S269 and T291, dysregulated phase separation, and subsequent aggregate formation of HIP55. Moreover, we demonstrated the important role of dynamic phase separation of HIP-55 in inhibiting hyperactivation of the β-adrenergic receptor-mediated P38/MAPK (mitogen-activated protein kinase) signaling pathway. A phosphorylation-deficient HIP-55 mutation, which undergoes massive phase separation and forms insoluble aggregates, loses the protective activity against HF.

Conclusions: Our work reveals that the phosphorylation-regulated dynamic phase separation of HIP-55 protects against sympathetic/adrenergic system-mediated heart failure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404759PMC
http://dx.doi.org/10.1161/CIRCULATIONAHA.123.067519DOI Listing

Publication Analysis

Top Keywords

phase separation
44
separation hip-55
24
phosphorylation-regulated dynamic
16
dynamic phase
16
hip-55
16
heart failure
12
liquid-liquid phase
12
phase
11
separation
11
hip-55 protects
8

Similar Publications

Background: A didelphic uterus represents a unique and infrequent congenital condition in which a woman possesses two distinct uteri, each with its own cervix. This anomaly arises due to partial or incomplete merging of the Müllerian ducts during the developmental stages in the womb. Accounting for uterine malformations, a didelphic uterus is a relatively rare condition, affecting approximately 0.

View Article and Find Full Text PDF

Protein quality control machinery: regulators of condensate architecture and functionality.

Trends Biochem Sci

January 2025

Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA; Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA. Electronic address:

Protein quality control (PQC) mechanisms including the ubiquitin (Ub)-proteasome system (UPS), autophagy, and chaperone-mediated refolding are essential to maintain protein homeostasis in cells. Recent studies show that these PQC mechanisms are further modulated by biomolecular condensates that sequester PQC components and compartmentalize reactions. Accumulating evidence points towards the PQC machinery playing a pivotal role in regulating the assembly, disassembly, and viscoelastic properties of several condensates.

View Article and Find Full Text PDF

The RNA-binding properties of Annexins.

J Mol Biol

January 2025

Elettra Sincrotrone Trieste, Italy; The Wohl Institute, King's College London, 5 Cutcombe Rd, SW59RT London, UK. Electronic address:

Annexins are a family of calcium-dependent phospholipid-binding proteins involved in crucial cellular processes such as cell division, calcium signaling, vesicle trafficking, membrane repair, and apoptosis. In addition to these properties, Annexins have also been shown to bind RNA, although this function is not universally recognized. In the attempt to clarify this important issue, we employed an integrated combination of experimental and computational approaches.

View Article and Find Full Text PDF

Constructing coral reef-like imprinted structure on molecularly imprinted nanocomposite membranes based on nanospheres with hydrophilic multicores for selective separation of acteoside.

J Chromatogr A

December 2024

School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China. Electronic address:

Molecularly imprinted nanocomposite membranes (MINMs) have shown great superiority in selective separation of acteoside (ACT) from phenylethanoid glycosides in Cistanche tubulosa. Herein, ACT-based MINMs (A-MINMs) with coral reef-like imprinted structure were proposed and developed for specifically separating ACT molecules. The nanospheres with hydrophilic multicores (NHMs) were introduced into polyvinylidene fluoride (PVDF) powders to obtain NHMs@PVDF membranes by a phase inversion method.

View Article and Find Full Text PDF

Eco-friendly synthesis of CuO/g-C₃N₄/Fe₃O₄ nanocomposites for efficient magnetic micro-solid phase extraction (M-μ-SPE) of trace cadmium from food and water samples.

Food Chem

December 2024

Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkiye; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkiye; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkiye; Khazar University Nano BioAnalytical Chemistry Center (NBAC), Mahsati Str 41, AZ-1096 Baku, Azerbaijan.

In this study, a green synthesis method for synthesizing a novel nanocomposite (CuO/g-C₃N₄/Fe₃O₄) utilizing renewable dragon fruit peels as the primary raw material was developed. Hydrothermal and thermal decomposition techniques were used for nanocomposite synthesis. This nanocomposite was subsequently employed for the separation and preconcentration of Cd(II) from various environments, including food and water samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!