A plant's perception of growth-promoting bacteria and their metabolites.

Front Plant Sci

Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.

Published: January 2024

Many recent studies have highlighted the importance of plant growth-promoting (rhizo)bacteria (PGPR) in supporting plant's development, particularly under biotic and abiotic stress. Most focus on the plant growth-promoting traits of selected strains and the latter's effect on plant biomass, root architecture, leaf area, and specific metabolite accumulation. Regarding energy balance, plant growth is the outcome of an input (photosynthesis) and several outputs (i.e., respiration, exudation, shedding, and herbivory), frequently neglected in classical studies on PGPR-plant interaction. Here, we discuss the primary evidence underlying the modifications triggered by PGPR and their metabolites on the plant ecophysiology. We propose to detect PGPR-induced variations in the photosynthetic activity using leaf gas exchange and recommend setting up the correct timing for monitoring plant responses according to the specific objectives of the experiment. This research identifies the challenges and tries to provide future directions to scientists working on PGPR-plant interactions to exploit the potential of microorganisms' application in improving plant value.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848262PMC
http://dx.doi.org/10.3389/fpls.2023.1332864DOI Listing

Publication Analysis

Top Keywords

plant growth-promoting
8
plant
7
plant's perception
4
perception growth-promoting
4
growth-promoting bacteria
4
bacteria metabolites
4
metabolites studies
4
studies highlighted
4
highlighted plant
4
growth-promoting rhizobacteria
4

Similar Publications

Functional and genomic analyses of plant growth promoting traits in Priestia aryabhattai and Paenibacillus sp. isolates from tomato rhizosphere.

Sci Rep

January 2025

Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB, UNVM-CONICET), Villa María, Argentina.

This study investigated plant growth-promoting (PGP) mechanisms in Priestia aryabhattai VMYP6 and Paenibacillus sp. VMY10, isolated from tomato roots. Their genomes were initially assessed in silico through various approaches, and these observations were then compared with results obtained in vitro and in vivo.

View Article and Find Full Text PDF

Bacillus velezensis FZB42 is a prominent plant growth-promoting rhizobacterium and biocontrol agent known for producing a wide array of antimicrobial compounds. The capability to genetically manipulate this strain would facilitate understanding its metabolism and enhancing its sustainable agriculture applications. In this study, we report the first successful implementation of high-efficiency CRISPR-Cas9 genome editing in B.

View Article and Find Full Text PDF

Impact of pollution on microbiological dynamics in the pistil stigmas of Orobanche lutea flowers (Orobanchaceae).

Sci Rep

January 2025

Center for Research and Conservation of Biodiversity, Department of Environmental Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland.

Our understanding of the basic relationships of microbiota associated with flowers is still quite limited, especially regarding parasitic plant species. The transient nature of flower parts such as pistil stigmas provides a unique opportunity for temporal investigations. This is the first report of the analysis of bacterial and fungal communities associated with the pistil stigmas of the lucerne parasite, Orobanche lutea.

View Article and Find Full Text PDF

The effects of rhizosphere microorganisms on plant growth and the associated mechanisms are a focus of current research, but the effects of exogenous combined inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on seedling growth and the associated rhizosphere microecological mechanisms have been little reported. In this study, a greenhouse pot experiment was used to study the effects of single or double inoculation with AM fungi () and two PGPR ( sp., sp.

View Article and Find Full Text PDF

Plant growth promotion via priming with volatile organic compounds emitted from strain EXTN-1.

Front Microbiol

January 2025

Research Institute of International Agriculture, Technology and Information, Hankyong National University, Anseong-si, Republic of Korea.

Volatile organic compounds (VOCs) produced by potential plant growth-promoting rhizobacteria (PGPR) play an important role in plant interactions. However, the mechanisms underlying this phenomenon are not well understood. Our findings show that the influence of VOCs from the PGPR strain (EXTN-1) on tobacco plant growth is dependent on the culture media used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!