A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

P66Shc Mediates SUMO2-induced Endothelial Dysfunction. | LitMetric

Sumoylation is a post-translational modification that can regulate different physiological functions. Increased sumoylation, specifically conjugation of SUMO2/3 (small ubiquitin like modifier 2/3), is detrimental to vascular health. However, the molecular mechanism mediating this effect is poorly understood. Here, we demonstrate that SUMO2 modifies p66Shc, which impairs endothelial function. Using multiple approaches, we show that p66Shc is a direct target of SUMO2. Mass spectrometry identified that SUMO2 modified lysine-81 in the unique collagen homology-2 domain of p66Shc. SUMO2ylation of p66Shc increased phosphorylation at serine-36, causing it to translocate to the mitochondria. Notably, sumoylation-deficient p66Shc (p66ShcK81R) was resistant to SUMO2-induced p66ShcS36 phosphorylation and mitochondrial translocation. Ingenuity pathway analysis showed that majority of effects of p66Shc SUMO2ylation were mediated via p66ShcK81. Finally, p66ShcK81R knockin mice were resistant to SUMO2-induced endothelial dysfunction. Collectively, our work uncovers a posttranslational modification of redox protein p66Shc and identifies SUMO2-p66Shc signaling as a regulator of vascular endothelial function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849724PMC
http://dx.doi.org/10.1101/2024.01.24.577109DOI Listing

Publication Analysis

Top Keywords

p66shc
8
sumo2-induced endothelial
8
endothelial dysfunction
8
endothelial function
8
p66shc sumo2ylation
8
resistant sumo2-induced
8
p66shc mediates
4
mediates sumo2-induced
4
endothelial
4
dysfunction sumoylation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!