Adult mosquitoes require regular sugar meals, usually floral nectar, to survive and flourish in natural habitats. Both males and females locate potential sugar sources using sensory proteins called odorant receptors activated by plant volatiles that facilitate orientation toward flowers or honeydew. The Yellow Fever mosquito, (Linnaeus, 1762), possesses a large repertoire of odorant receptors, many of which are likely to support floral odor detection and nectar-seeking. In this study, we have employed a heterologous expression system and the two-electrode voltage clamping technique to identify environmentally relevant chemical compounds that activate specific odorant receptors. Importantly, we have uncovered ligand-receptor pairings for a suite of odorant receptors likely to mediate appetitive or aversive behavioral responses, thus shaping a critical aspect of the life history of a medically important mosquito. Moreover, the high degree of conservation of these receptors in other disease-transmitting species suggests common mechanisms of floral odor detection. This knowledge can be used to further investigate mosquito foraging behavior to either enhance existing, or develop novel, control strategies, especially those that incorporate mosquito bait-and-kill or attractive toxic sugar bait technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849520 | PMC |
http://dx.doi.org/10.1101/2023.10.17.562234 | DOI Listing |
BMC Genomics
January 2025
College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
Background: Chemosensory perception plays a vital role in insect survival and adaptability, driving essential behaviours such as navigation, mate identification, and food location. This sensory process is governed by diverse gene families, including odorant-binding proteins (OBPs), olfactory receptors (ORs), ionotropic receptors (IRs), chemosensory proteins (CSPs), gustatory receptors (GRs), and sensory neuron membrane proteins (SNMPs). The oriental mole cricket (Gryllotalpa orientalis Burmeister), an invasive pest with an underground, phyllophagous lifestyle, causes substantial crop damage.
View Article and Find Full Text PDFGenes Cells
January 2025
Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Saitama, Japan.
Single-cell RNA-sequencing (scRNA-seq) is a powerful method to comprehensively overlook gene expression profiles of individual cells in various tissues, providing fundamental datasets for classification of cell types and further functional analyses. Here we adopted scRNA-seq analysis for the zebrafish olfactory sensory neurons which respond to water-borne odorants and pheromones to elicit various behaviors crucial for survival and species preservation. Firstly, a single-cell dissociation procedure of the zebrafish olfactory rosettes was optimized by using cold-active protease, minimizing artifactual neuronal activation.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
University College Dublin, School of Biology and Environmental Science, Belfield, Dublin 4, Ireland.
Chemical signaling can play a crucial role in predator-prey dynamics. Here, we present evidence that ink from the common cuttlefish (Sepia officinalis) targets olfactory receptor proteins in shark, potentially acting as a predator deterrence. We apply in silico 3D docking analysis to investigate the binding affinity of various odorant molecules to shark olfactory receptors of two shark species: cloudy catshark (Scyliorhinus torazame) and white shark (Carcharodon carcharias).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
Odorant receptors (ORs), which constitute approximately 50% of all human G protein-coupled receptors, are increasingly recognized for their diverse roles beyond odor perception, including functions in various pathological conditions like brain diseases and cancers. However, the roles of ORs in glioblastoma (GBM), the most aggressive primary brain tumor with a median survival of only 15 months, remain largely unexplored. Here, we performed an integrated transcriptomic analysis combining The Cancer Genome Atlas RNA-seq and single-cell RNA sequencing data from GBM patients to uncover cell-type-specific roles of ORs within the tumor and its microenvironment.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Cardiothoracic Surgery, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
Aortic aneurysm, the pathological dilatation of the aorta at distinct locations, can be attributed to many different genetic and environmental factors. The resulting pathobiological disturbances generate a complex interplay of processes affecting cells and extracellular molecules of the tunica interna, media and externa. In short, aortic aneurysm can affect processes involving the extracellular matrix, lipid trafficking/atherosclerosis, vascular smooth muscle cells, inflammation, platelets and intraluminal thrombus formation, as well as various endothelial functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!