Identifying the interactome for a protein of interest is challenging due to the large number of possible binders. High-throughput experimental approaches narrow down possible binding partners, but often include false positives. Furthermore, they provide no information about what the binding region is (e.g. the binding epitope). We introduce a novel computational pipeline based on an AlphaFold2 (AF) Competition Assay (AF-CBA) to identify proteins that bind a target of interest from a pull-down experiment, along with the binding epitope. Our focus is on proteins that bind the Extraterminal (ET) domain of Bromo and Extraterminal domain (BET) proteins, but we also introduce nine additional systems to show transferability to other peptide-protein systems. We describe a series of limitations to the methodology based on intrinsic deficiencies to AF and AF-CBA, to help users identify scenarios where the approach will be most useful. Given the speed and accuracy of the methodology, we expect it to be generally applicable to facilitate target selection for experimental verification starting from high-throughput protein libraries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849530PMC
http://dx.doi.org/10.1101/2024.01.20.576374DOI Listing

Publication Analysis

Top Keywords

computational pipeline
8
high-throughput protein
8
protein libraries
8
binding epitope
8
proteins bind
8
extraterminal domain
8
binding
5
sifting noise
4
noise computational
4
pipeline accurate
4

Similar Publications

Designing binders to target undruggable proteins presents a formidable challenge in drug discovery. In this work, we provide an algorithmic framework to design short, target-binding linear peptides, requiring only the amino acid sequence of the target protein. To do this, we propose a process to generate naturalistic peptide candidates through Gaussian perturbation of the peptidic latent space of the ESM-2 protein language model and subsequently screen these novel sequences for target-selective interaction activity via a contrastive language-image pretraining (CLIP)-based contrastive learning architecture.

View Article and Find Full Text PDF

Combining computational modeling and experimental library screening to affinity-mature VEEV-neutralizing antibody F5.

Protein Sci

February 2025

Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, California, USA.

Engineered monoclonal antibodies have proven to be highly effective therapeutics in recent viral outbreaks. However, despite technical advancements, an ability to rapidly adapt or increase antibody affinity and by extension, therapeutic efficacy, has yet to be fully realized. We endeavored to stand-up such a pipeline using molecular modeling combined with experimental library screening to increase the affinity of F5, a monoclonal antibody with potent neutralizing activity against Venezuelan Equine Encephalitis Virus (VEEV), to recombinant VEEV (IAB) E1E2 antigen.

View Article and Find Full Text PDF

Background: The modern approach to treating rectal cancer, which involves total mesorectal excision directed by imaging assessments, has significantly enhanced patient outcomes. However, locally recurrent rectal cancer (LRRC) continues to be a significant clinical issue. Identifying LRRC through imaging is complex, due to the mismatch between fibrosis and inflammatory pelvic tissue.

View Article and Find Full Text PDF

Background: Tissue clearing combined with light-sheet microscopy is gaining popularity among neuroscientists interested in unbiased assessment of their samples in 3D volume. However, the analysis of such data remains a challenge. ClearMap and CellFinder are tools for analyzing neuronal activity maps in an intact volume of cleared mouse brains.

View Article and Find Full Text PDF

Congenital heart disease (CHD) is a prevalent condition characterized by defective heart development, causing premature death and stillbirths among infants. Genome-wide association studies (GWASs) have provided insights into the role of genetic variants in CHD pathogenesis through the identification of a comprehensive set of single-nucleotide polymorphisms (SNPs). Notably, 90-95% of these variants reside in the noncoding genome, complicating the understanding of their underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!