is an opportunistic bacterial pathogen responsible for a large percentage of airway infections that cause morbidity and mortality in immunocompromised patients, especially those with cystic fibrosis (CF). One important virulence factor is a type III secretion system (T3SS) that translocates effectors into host cells. ExoS is a T3SS effector with ADP ribosyltransferase (ADPRT) activity. The ADPRT activity of ExoS promotes virulence by inhibiting phagocytosis and limiting the oxidative burst in neutrophils. The T3SS also translocates flagellin, which can activate the NLRC4 inflammasome, resulting in: 1) gasdermin-D (GSDMD) pores, release of IL-1β and pyroptosis; and 2) histone 3 citrullination (CitH3) and decondensation and expansion of nuclear DNA into the cytosol. However, recent studies with the laboratory strain PAO1 indicate that ExoS ADPRT activity inhibits activation of the NLRC4 inflammasome in neutrophils. Here, an ExoS CF clinical isolate of with a hyperactive T3SS was identified. Variants of the hyperactive T3SS mutant or PAO1 were used to infect neutrophils from C57BL/6 mice or mice engineered to have a CF genotype or a defect in inflammasome assembly. Responses to NLRC4 inflammasome assembly or ExoS ADPRT activity were assayed, results of which were found to be similar for C57BL/6 or CF neutrophils. The hyperactive T3SS mutant had enhanced resistance to neutrophil killing, like previously identified hypervirulent isolates. ExoS ADPRT activity in the hyperactive T3SS mutant regulated inflammasome and nuclear DNA decondensation responses like PAO1 but promoted enhanced CitH3 and plasma membrane rupture (PMR). Glycine supplementation inhibited PMR caused by the hyperactive T3SS mutant, suggesting ninjurin-1 is required for this process. These results identify enhanced neutrophil PMR as a pathogenic activity of ExoS ADPRT in a hypervirulent isolate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849719 | PMC |
http://dx.doi.org/10.1101/2024.01.24.577040 | DOI Listing |
Immun Inflamm Dis
January 2025
Department of Medical Biochemistry, Institute of Health, Dambi Dollo University, Dambi Dolo, Ethiopia.
Background: The pathomechanism of blast traumatic brain injury (TBI) and blunt TBI is different. In blast injury, evidence indicates that a single blast exposure can often manifest long-term neurological impairments. However, its pathomechanism is still elusive, and treatments have been symptomatic.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
Taking into account involvement of the RNA-binding proteins in regulation of activity of poly(ADP-ribose) polymerase 1 (PARP1), a key factor of DNA repair, the effect of the intrinsically disordered protein Sam68 (Src-associated substrate during mitosis of 68 kDa) on catalytic activity of this enzyme was studied. Plasmid containing coding sequence of the Sam68 protein was obtained. Using the obtained construct, conditions for the Sam68 expression in cells were optimized and procedure for protein purification was developed.
View Article and Find Full Text PDFCell Death Dis
January 2025
NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China.
Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.
View Article and Find Full Text PDFNat Commun
January 2025
Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA.
Over-accumulation of reactive oxygen species (ROS) causes hepatocyte dysfunction and apoptosis that might lead to the progression of liver damage. Sirtuin-3 (SIRT3), the main NAD+-dependent deacetylase located in mitochondria, has a critical role in regulation of mitochondrial function and ROS production as well as in the mitochondrial antioxidant mechanism. This study explores the roles of astragaloside IV (AST-IV) and formononetin (FMR) in connection with SIRT3 for potential antioxidative effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!