A selenium-based tripodal chalcogen bond (ChB) donor TPI-3Se is demonstrated for the recognition and extraction of I from 100% water medium. NMR and ITC studies with the halides reveal that the ChB donor selectively binds with the large, weakly hydrated I. Interestingly, I crystallizes out selectively in the presence of other halides supporting the superiority of the selective recognition of I. The X-ray structure of the ChB-iodide complex manifests both the and coordinated interactions, which is rare in the C-Se···I chalcogen bonding. Furthermore, to validate the selective I binding potency of TPI-3Se in pure water, comparisons are made with its hydrogen and halogen bond donor analogs. The computational analysis also provides the mode of I recognition by TPI-3Se. Importantly, this receptor is capable of extracting I from pure water through selenium sigma-hole and I interaction with a high degree of efficiency (∼70%).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847689PMC
http://dx.doi.org/10.1016/j.isci.2024.108917DOI Listing

Publication Analysis

Top Keywords

pure water
12
selective recognition
8
recognition extraction
8
chalcogen bonding
8
chb donor
8
extraction iodide
4
iodide pure
4
water
4
water tripodal
4
tripodal selenoimidazolium-based
4

Similar Publications

Although the Diels-Alder reaction (DA) has garnered significant attention due to its numerous advantages, its long reaction time is a drawback. Herein, we investigated the effects of polarity difference on DA using Layer-by-Layer (LbL) films comprising polycationic polyallylamine hydrochloride and polyanionic poly (styrenesulfonic acid-co-furfuryl methacrylate) [poly (SS--FMA)] as the reaction environment. First, furan composition in poly (SS--FMA) was adjusted to be 19 mol% to achieve good water solubility and layer deposition.

View Article and Find Full Text PDF

Novel organic additives with high dipole moments: Improving the anode interface structure to enhance the performance of zinc ion aqueous batteries.

J Colloid Interface Sci

December 2024

Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China. Electronic address:

The reversibility and stability of aqueous zinc-ion batteries (AZIBs) are largely limited by free-water-induced side reactions (e.g., hydrogen evolution and zinc corrosion) and negative zinc dendrite growth.

View Article and Find Full Text PDF

Hypothesis: The presence of hydrodynamic slip of water on smooth hydrophobic surfaces has been debated intensely over the last decades. In recent experiments, the stronger bounce of free-rising bubbles from smooth hydrophobic surfaces compared to smooth hydrophilic surfaces was interpreted as evidence for a significant water slip on smooth hydrophobic surfaces.

Experiments: To examine the possible water-slip effect, we conduct well-controlled experiments comparing the bouncing dynamics of millimeter-sized free-rising bubbles from smooth hydrophobic and hydrophilic surfaces.

View Article and Find Full Text PDF

Amino-functionalized manganese oxide for effective hexavalent chromium adsorption.

Environ Sci Pollut Res Int

December 2024

Laboratory of Interface Materials Environment, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco.

This study explores the use of functionalized manganese oxide (K-MnO-NH) for the removal of hexavalent chromium (Cr(VI)) ions, a highly toxic heavy metal contaminant, from wastewater. The synthesis of K-MnO-NH was achieved through a two-step process, followed by comprehensive characterization using various analytical techniques, which confirmed the material's formation as a pure phase. The K-MnO-NH exhibited exceptional chromium removal efficiency, achieving up to 90% (4.

View Article and Find Full Text PDF

This paper presents a slot antenna integrated with a split ring resonator (SRR) and feed line, designed to achieve a high Q-factor while maximizing channel capacity utilization. By incorporating a lens into the dielectric resonator antenna (DRA), we enhance both bandwidth and directivity, with the dielectric material's permittivity serving as a key control parameter for radiation characteristics. We explore water and ethanol as controllable dielectrics within the terahertz (THz) frequency range (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!