Stem-cell-derived extracellular vesicles (EVs) are emerging as an alternative approach to stem cell therapy. Successful lyophilization of EVs could enable convenient storage and distribution of EV medicinal products at room temperature for long periods, thus considerably increasing the accessibility of EV therapeutics to patients. In this study, we aimed to identify an appropriate lyoprotectant composition for the lyophilization and reconstitution of stem-cell-derived EVs. MSC-derived EVs were lyophilized using different lyoprotectants, such as dimethyl sulfoxide, mannitol, trehalose, and sucrose, at varying concentrations. Our results revealed that a mixture of trehalose and sucrose at high concentrations could support the formation of amorphous ice by enriching the amorphous phase of the solution, which successfully inhibited the acceleration of buffer component crystallization during lyophilization. Lyophilized and reconstituted EVs were thoroughly evaluated for concentration and size, morphology, and protein and RNA content. The therapeutic effects of the reconstituted EVs were examined using a tube formation assay with human umbilical vein endothelial cells. After rehydration of the lyophilized EVs, most of their generic characteristics were well-maintained, and their therapeutic capacity recovered to levels similar to those of freshly collected EVs. The concentrations and morphologies of the lyophilized EVs were similar to the initial features of the fresh EV group until day 30 at room temperature, although their therapeutic capacity appeared to decrease after 7 days. Our study suggests an appropriate composition of lyoprotectants, particularly for EV lyophilization, which could encourage the applications of stem-cell-derived EV therapeutics in the health industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10845601 | PMC |
http://dx.doi.org/10.34133/bmr.0005 | DOI Listing |
Front Pharmacol
December 2024
Systems Pharmacology and Translational Therapeutics Laboratory, The Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy.
Inflammation plays a critical role in the pathogenesis of various diseases by promoting the acquisition of new functional traits by different cell types. Shared risk factors between cardiovascular disease and cancer, including smoking, obesity, diabetes, high-fat diet, low physical activity, and alcohol consumption, contribute to inflammation linked to platelet activation. Platelets contribute to an inflammatory state by activating various normal cells, such as fibroblasts, immune cells, and vascular cells.
View Article and Find Full Text PDFis the etiologic agent of the plague. A hallmark of plague is subversion of the host immune response by disrupting host signaling pathways required for inflammation. This non-inflammatory environment permits bacterial colonization and has been shown to be essential for disease manifestation.
View Article and Find Full Text PDFDi(2-ethylhexyl) phthalate (DEHP), a known endocrine-disrupting chemical, is a plasticizer found in many common consumer products. High levels of DEHP exposure have been linked to adverse pregnancy outcomes, yet little is known about how it affects human uterine functions. We previously reported that the estrogen-regulated transcription factor hypoxia-inducible factor 2 alpha (HIF2α) promotes the expression of Rab27b, which controls the trafficking and secretion of extracellular vesicles (EVs).
View Article and Find Full Text PDFThe blood-brain barrier (BBB) limits drug delivery to the brain and the movement of neurological biomarkers between the brain and blood. Focused ultrasound-mediated blood-brain barrier opening (FUS-BBBO) noninvasively opens the BBB, allowing increased molecular transport to and from the brain parenchyma. Despite being initially developed as a drug delivery method, FUS-BBBO has shown promise both as a neuroimmunotherapeutic modality, and as a way of improving neurological disease diagnosis via amplification of disease biomarker circulation.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.
Plant-driven extracellular vesicles (PEVs) have attracted significant interest due to their natural origin, remarkable bioactivity, and efficacy in drug encapsulation and target delivery. In our work, extracellular vesicles from Citri Reticulate Pericranium (CEVs) were isolated and investigated their physicochemical characteristics and biological activities. We identified the vesicle structures as regular, with a particle size of approximately 200 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!