Due to its nutritional and bioactive content, tomato pomace (TP) remains among the world's richest fruits and vegetables. Tomatoes and TP (generated coproduct) are a very rich source of lycopene and other carotenoid compounds and contain an essential amount of polyphenols, policosanol, phytosterols, organic acids, dietary fibers, minerals, and vitamins. TP is a promising source of significant bioactive compounds with antioxidant and antimicrobial potential. Therefore, their consumption is known to be effective in preventing certain chronic diseases. For example, lycopene prevents prostate cancer and acts as a hepatoprotector and genoprotector against mycotoxins, pesticide residues, and heavy metals. Thus, the valorization of TP as a food ingredient can be of great health, economic and environmental interest and contribute to improving nutrition and food security. During the last decades, considerable efforts have been made to valorize TP as a crucial functional ingredient in improving: (i) the nutritional and functional properties, (ii) sensory characteristics and (iii) the shelf life of many foods. The current review aims to update and summarize the knowledge on the recent food applications of TP, particularly its use as a functional ingredient to improve the functional properties and shelf life of foods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847943 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e25261 | DOI Listing |
Probiotics Antimicrob Proteins
January 2025
Faculty of Biotechnologies (BioTech), ITMO University, 9 Lomonosova Street, 191002, Saint Petersburg, Russia.
Antimicrobial peptides (AMPs) are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA.
Minimizing the oxidation of lipids remains one of the most important challenges to extend the shelf-life of food products and reduce food waste. While most consumer products contain antioxidants, the most efficient strategy is to incorporate combinations of two or more compounds, boosting the total antioxidant capacity. Unfortunately, the reasons for observing synergistic / antagonistic / additive effects in food samples are still unclear, and it is common to observe very different responses even for similar mixtures.
View Article and Find Full Text PDFFood Chem
December 2024
College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China. Electronic address:
Sucrose laurate, a commonly used emulsifier, was investigated to explore its preservative effect combined with nisin using Bacillus subtilis as indicator. The results suggested that sucrose laurate and nisin exhibited synergistic antibacterial effect with the fractional inhibitory concentration index of 0.5.
View Article and Find Full Text PDFFood Chem
December 2024
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
Fruit preservation materials play an instrumental role in preventing fruit deterioration and extending shelf life. However, existing fresh-keeping materials often prove inadequate in simultaneously achieving antibacterial properties, maintaining freshness, antioxidant effects, good biocompatibility, and prolonged fruit shelf life. Therefore, we present the first preparation of a natural polysaccharide spray hydrogel (Q/O/Zn hydrogel), loaded with chlorogenic acid‑zinc nanoparticles (CA@ZnNPs), utilizing quaternary ammonium insect chitosan (QECS) and oxidized pullulan (OPUL) for the preservation of perishable fruits.
View Article and Find Full Text PDFFood Chem
December 2024
Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.
Beyond storage capacity, long-term grain storage faces significant challenges due to the activity of lipoxygenases (LOXs). These enzymes catalyze the production of volatiles from free fatty acids, leading to stale odors and off-flavors. These changes degrade the quality of stored grains, even under regulated conditions, affecting the profitability of stored products to the farmers and the assurance of high-quality food for consumers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!