With thin film solar cell applications, chalcopyrite semiconductors present enormous potential for usage as an absorber layer. In today's electronics sector, wide band gap semiconductors have extreme demand for applications such as high-power, high-frequency, challenging devices that are resistant to high temperatures, optoelectronic devices, and short-wavelength light-emitting devices. The undoped and tin-doped CGS thin films are the subject of the current investigation. Pure and Tin (Sn) doped CGS thin films were produced on a glass substrate using a low-cost chemical spray pyrolysis technique in a nitrogen atmosphere. Spray pyrolysis is a flexible and efficient method for thin-film deposition. The process parameters, such as the nozzle distance, spray time, spray rate, and temperature, have a significant impact on the films' quality and characteristics. Fundamental characterization techniques, including XRD analysis, Micro Raman analysis, EDAX, UV-VIS-NIR spectroscopy, and Scanning Electron Microscopy (SEM), were used to examine the generated pristine and Sn-doped CGS thin films. The XRD patterns showed that the pristine and Sn-doped CGS thin films exhibit a tetragonal phase and there is a decrease in the crystallite size with increasing dopant concentration. SEM studies revealed that there is a change in the grain size and surface morphology of the film with increasing Sn doping concentration. The presence of copper (Cu), gallium (Ga), sulfur (S), and Sn was further confirmed by studying the EDAX spectrum. SEM results indicate that the surface morphology of the CGS films is modified by Sn doping. Further increasing the dopant percentage caused deformation and fragmentation of the sample. A comparison of the Raman spectra for pristine and Sn-doped CGS revealed that there is some substantial change in the layer composition after adding the dopant. Compared to the pristine CGS, the peak positions of CGS (1 wt %) and CGS (3 wt %) are not shifted but there is a significant change in the relative peak intensities and formation of an additional peak The Sn-doped CuGaS thin films had optical band gaps of 2.47 eV (0.0 wt% Sn-doped), 2.33 eV (1 wt% Sn-doped), and 2.58 eV (3 wt% Sn-doped). From this study, we can say that the 1 wt% Sn doped CGS sample is the best for solar cell application. The XRD results indicated that the Sn dopant addition in the CuGaS lattice site does not affect the symmetry of the material. Enhancement of absorption is done by the Sn dopant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847657 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e25425 | DOI Listing |
Astrobiology
January 2025
Experimental Biophysics and Space Sciences, Department of Physics, Freie Universitaet Berlin, Berlin, Germany.
The (PSS) experiment was part of the European Space Agency's mission and was conducted on the International Space Station from 2014 to 2016. The PSS experiment investigated the properties of montmorillonite clay as a protective shield against degradation of organic compounds that were exposed to elevated levels of ultraviolet (UV) radiation in space. Additionally, we examined the potential for montmorillonite to catalyze UV-induced breakdown of the amino acid alanine and its potential to trap the resulting photochemical byproducts within its interlayers.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Materials Science and Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan.
Self-organization realizes various nanostructures to control material properties such as superconducting vortex pinning and thermal conductivity. However, the self-organization of nucleation and growth is constrained by the growth geometric symmetry. To realize highly controlled three-dimensional nanostructures by self-organization, nanostructure formation that breaks the growth geometric symmetry thermodynamically and kinetically, such as tilted or in-plane aligned nanostructures, is a challenging issue.
View Article and Find Full Text PDFMolecular junctions (MJs) are celebrated nanoelectronic devices for mimicking conventional electronic functions, including rectifiers, sensors, wires, switches, transistors, negative differential resistance, and memory, following an understanding of charge transport mechanisms. However, capacitive nanoscale molecular junctions are rarely seen. The present work describes electrochemically (E-Chem) grown covalently attached molecular thin films of 10, 14.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, Medical Teaching Institution (MTI) Hayatabad Medical Complex, Peshawar, PAK.
Background: Malaria and dengue are significant mosquito-borne diseases prevalent in tropical and subtropical climates, with increasing reports of co-infections. This study aimed to determine the frequency, patterns, and risk factors of these co-infections in Peshawar.
Methods: A cross-sectional study was conducted from June to December 2023 in three tertiary care hospitals in Peshawar.
J Phys Chem Lett
January 2025
Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.
We have systematically studied the electromagnetic transport properties of PbTe thin films under gate voltage modulation. The system demonstrates pronounced electron-electron interactions exclusively within the gate voltage range where only hole carriers are present. Furthermore, the Berry phase is utilized to qualitatively elucidate the transition between weak antilocalization (WAL) and weak localization (WL) through the regulation of gate voltage and temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!