Reducing energy consumption is major challenge in the industrialization of chemical pretreatments for the extraction of cellulose nanofibrils (CNF). In this study, an integrated chemical pretreatment with alkaline/acid-chlorite/TEMPO-oxidant was used for the nano-fibrillation of CNF from pine sawdust (WS). The alkaline and acid-chlorite pretreatments effectively eliminated the non-cellulosic components present in WS, resulting in the delamination of individual cell layers and swelling of the internal structures within the cellulose fiber bundles and cellulose microfibrils that form these layers. The spacing between CNF within the cellulose microfibrils increased from 3.7 nm to 5.5 nm. These loosely packed hierarchical structures facilitated the penetration of the reagent, which led to an increase in the specific surface area during the TEMPO-oxidant reaction and consequently accelerated the reaction rate. The WS was pretreated in a very dilute solution (1 % NaOH and 0.5 % NaClO) under mild conditions (70 °C for 1 h), which resulted in a significant reduction of the TEMPO reaction time (from 3 h to 30 min) and a lower consumption of the reaction reagent (one fourth of the amount consumed compared to the direct oxidation of WS to achieve the same degree of cellulose nano-fibrillation).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847643PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e25355DOI Listing

Publication Analysis

Top Keywords

extraction cellulose
8
cellulose nanofibrils
8
pine sawdust
8
integrated chemical
8
chemical pretreatment
8
cellulose microfibrils
8
cellulose
5
nanofibrils pine
4
sawdust integrated
4
pretreatment reducing
4

Similar Publications

Upcycling industrial peach waste to produce dissolving pulp.

Environ Sci Pollut Res Int

January 2025

Laboratory of Design and Development of Innovative Knitted Textiles and Garments, Department of Industrial Design and Production Engineering, University of West Attica, 12244, Egaleo, Attica, Greece.

This study investigates the production of high-purity cellulose pulp from peach (Prunus persica) fruit wastes generated during the processing of a Greek compote and juice production industry. A three-step chemical process is used, including alkaline treatment with NaOH, organic acid (acetic and formic) treatment, and hydrogen peroxide treatment, with the goal of cellulose extraction and purification. A fractional factorial design optimized reagent levels, revealing the strong influence of NaOH concentration on α-cellulose content and degree of polymerization.

View Article and Find Full Text PDF

As a result of the current high throughput of the fast fashion collections and the concomitant decrease in product lifetime, we are facing enormous amounts of textile waste. Since textiles are often a blend of multiple fibers (predominantly cotton and polyester) and contain various different components, proper waste management and recycling are challenging. Here, we describe a high-yield process for the sequential chemical recycling of cotton and polyester from mixed waste textiles.

View Article and Find Full Text PDF

Conversion of rice straw into nanocellulose offers a sustainable approach to agricultural waste management, yielding an industrially important product with potential applications. This work focuses on effectively extracting pure cellulose from both widely used Basmati and Parmal rice straw (BRS and PRS) using less alkali concentrations (3-5 % NaOH). The process was optimized via Box Behnken design at 90-150 °C temperatures for 90-150 min, which resulted in 88.

View Article and Find Full Text PDF

Tissue regeneration after a wound occurs through three main overlapping and interrelated stages namely inflammatory, proliferative, and remodelling phases, respectively. The inflammatory phase is key for successful tissue reconstruction and triggers the proliferative phase. The macrophages in the non-healing wounds remain in the inflammatory loop, but their phenotypes can be changed interactions with nanofibre-based scaffolds mimicking the organisation of the native structural support of healthy tissues.

View Article and Find Full Text PDF

The applicability of cellulose and its derivatives is greatly depends on their attributes such as aspect ratio, morphology, surface chemistry, crystallinity, as well as their thermal and mechanical properties. However, these attributes can alter according to the utilized raw material, size classifications, extraction techniques, or fibrillation methods. Among these, the effect of raw material particle size on cellulose properties has received limited attention in scientific studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!