Exosomes derived from BMSCs enhance diabetic wound healing through circ-Snhg11 delivery.

Diabetol Metab Syndr

Department of Vascular Surgery, The Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, #321 Zhongshan Road, Nanjing, Jiangsu, 210008, China.

Published: February 2024

Background: Exosomes (Exos) generated from bone mesenchymal stem cells (BMSCs) are elucidated to enhance cutaneous wound healing in mice models of diabetes mellitus (DM). While underlying mechanisms remain unknown.

Methods: Next-generation sequencing (NGS) was used to examine changes in circRNA expression levels following Exo treatment. Luciferase assays were used to determine the interactions between RNAs. Immunofluorescence staining was used to examine reactive oxygen species (ROS) in endothelial progenitor cells (EPCs) cultured in high glucose (HG) conditions. Therapeutic effects regarding Exos were also examined by immunofluorescence.

Results: We found that Exo treatment enhanced cutaneous wound healing significantly. NGS indicated that circ-Snhg11 was involved in Exo-mediated tissue repairing. Downregulation of circ-Snhg11 decreased Exo-mediated therapy responses during wound healing in diabetic mouse. Our luciferase reporter data confirmed that SLC7A11 and miR-144-3p were circ-Snhg11 downstream targets. miR-144-3p overexpression or SLC7A11 knockdown altered the protective effects of circ-Snhg11 upon EPCs exposed to HG conditions. Upregulation of circ-Snhg11 incremented therapy effects of Exo treatment during wound healing in DM mice through enhanced angiogenesis along with a reduction in GPX4-mediated ferroptosis.

Conclusions: circ-Snhg11 in BMSC-Exos enhanced SLC7A11/GPX4-mediated anti-ferroptosis signals via miR-144-3p sponging resulting in enhanced diabetic wound healing and improved angiopoiesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851501PMC
http://dx.doi.org/10.1186/s13098-023-01210-xDOI Listing

Publication Analysis

Top Keywords

wound healing
24
exo treatment
12
diabetic wound
8
cutaneous wound
8
healing mice
8
circ-snhg11
7
wound
6
healing
6
exosomes derived
4
derived bmscs
4

Similar Publications

Introduction/objective: Plants and their bioactive compounds play a crucial role in the pharmaceutical industry for treating cancer. To date, the cytotoxic and antiproliferative effects of Hypericum perforatum methanol extract on human thyroid cancer cell lines have not been thoroughly explored. The present study aimed to assess the potential anti-cancer effects of HPME on human thyroid cancer and investigate its potential therapeutic benefits.

View Article and Find Full Text PDF

Hydrogen sulfide (H2S) plays crucial inflammatory modulating roles, representing a promising candidate for anti-inflammatory therapies. However, current H2S delivery approaches lack sufficient specificity against inflammatory response. Herein, regarding the overexpressed aminopeptidase N (APN) at the inflammation sites, an APN-activated self-immolative carbonyl sulfide (COS)/H2S donor (AlaCOS) was developed for inflammatory response-specific H2S delivery.

View Article and Find Full Text PDF

Diabetic foot ulcers (DFUs) represents a significant public health issue, with a rising global prevalence and severe potential complications including amputation. Traditional treatments often fall short due to various limitations such as high recurrence rates and extensive resource utilization. This editorial explores the innovative use of acellular fish skin grafts as a transformative approach in DFU management.

View Article and Find Full Text PDF

Background: Skin wounds are highly common in diabetic patients, and with increasing types of pathogenic bacteria and antibiotic resistance, wounds and infections in diabetic patients are difficult to treat and heal.

Aim: To explore the effects of betaine ointment (BO) in promoting the healing of skin wounds and reducing the inflammation and apoptosis of skin cells in microbially infected diabetic mice.

Methods: By detecting the minimum inhibitory concentrations (MICs) of betaine and plant monomer components such as psoralen, we prepared BO with betaine as the main ingredient, blended it with traditional Chinese medicines such as gromwell root and psoralen, and evaluated its antibacterial effects and safety and .

View Article and Find Full Text PDF

Background: Diabetic foot ulcers (DFUs) are a significant contributor to disability and mortality in diabetic patients. Macrophage polarization and functional regulation are promising areas of research and show therapeutic potential in the field of DFU healing. However, the complex mechanism, the difficulty in clinical translation, and the large heterogeneity present significant challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!