Background: Recent developments in the domain of biomedical knowledge bases (KBs) open up new ways to exploit biomedical knowledge that is available in the form of KBs. Significant work has been done in the direction of biomedical KB creation and KB completion, specifically, those having gene-disease associations and other related entities. However, the use of such biomedical KBs in combination with patients' temporal clinical data still largely remains unexplored, but has the potential to immensely benefit medical diagnostic decision support systems.

Results: We propose two new algorithms, LOADDx and SCADDx, to combine a patient's gene expression data with gene-disease association and other related information available in the form of a KB, to assist personalized disease diagnosis. We have tested both of the algorithms on two KBs and on four real-world gene expression datasets of respiratory viral infection caused by Influenza-like viruses of 19 subtypes. We also compare the performance of proposed algorithms with that of five existing state-of-the-art machine learning algorithms (k-NN, Random Forest, XGBoost, Linear SVM, and SVM with RBF Kernel) using two validation approaches: LOOCV and a single internal validation set. Both SCADDx and LOADDx outperform the existing algorithms when evaluated with both validation approaches. SCADDx is able to detect infections with up to 100% accuracy in the cases of Datasets 2 and 3. Overall, SCADDx and LOADDx are able to detect an infection within 72 h of infection with 91.38% and 92.66% average accuracy respectively considering all four datasets, whereas XGBoost, which performed best among the existing machine learning algorithms, can detect the infection with only 86.43% accuracy on an average.

Conclusions: We demonstrate how our novel idea of using the most and least differentially expressed genes in combination with a KB can enable identification of the diseases that a patient is most likely to have at a particular time, from a KB with thousands of diseases. Moreover, the proposed algorithms can provide a short ranked list of the most likely diseases for each patient along with their most affected genes, and other entities linked with them in the KB, which can support health care professionals in their decision-making.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848462PMC
http://dx.doi.org/10.1186/s12859-024-05674-0DOI Listing

Publication Analysis

Top Keywords

gene expression
12
biomedical knowledge
12
disease diagnosis
8
proposed algorithms
8
machine learning
8
learning algorithms
8
validation approaches
8
scaddx loaddx
8
detect infection
8
diseases patient
8

Similar Publications

Purpose: This study aimed to evaluate early-phase safety of subretinal application of AAVanc80.CAG.USH1Ca1 (OT_USH_101) in wild-type (WT) pigs, examining the effects of a vehicle control, low dose, and high dose.

View Article and Find Full Text PDF

Identification of circadian rhythm-related biomarkers and development of diagnostic models for Crohn's disease using machine learning algorithms.

Comput Methods Biomech Biomed Engin

January 2025

Department of Gastroenterolgy, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.

The global rise in Crohn's Disease (CD) incidence has intensified diagnostic challenges. This study identified circadian rhythm-related biomarkers for CD using datasets from the GEO database. Differentially expressed genes underwent Weighted Gene Co-Expression Network Analysis, with 49 hub genes intersected from GeneCards data.

View Article and Find Full Text PDF

Single-cell and spatial transcriptomics illuminate bat immunity and barrier tissue evolution.

Mol Biol Evol

January 2025

Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

Bats have adapted to pathogens through diverse mechanisms, including increased resistance - rapid pathogen elimination, and tolerance - limiting tissue damage following infection. In the Egyptian fruit bat (an important model in comparative immunology) several mechanisms conferring disease tolerance were discovered, but mechanisms underpinning resistance remain poorly understood. Previous studies on other species suggested that elevated basal expression of innate immune genes may lead to increased resistance to infection.

View Article and Find Full Text PDF

A novel ubiquitination-related gene signature for overall survival prediction in patients with liver hepatocellular carcinoma.

Discov Oncol

January 2025

Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.

Liver hepatocellular carcinoma (LIHC) is a highly heterogeneous disease, necessitating the discovery of novel biomarkers to enhance individualized treatment approaches. Recent research has shown the significant involvement of ubiquitin-related genes (UbRGs) in the progression of LIHC. However, the prognostic value of UbRGs in LIHC has not been investigated.

View Article and Find Full Text PDF

Complementary Strategies to Identify Differentially Expressed Genes in the Choroid Plexus of Patients with Progressive Multiple Sclerosis.

Neuroinformatics

January 2025

Laboratory for Applied Genomics and Bioinnovations, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil.

Multiple sclerosis (MS) is a neurological disease causing myelin and axon damage through inflammatory and autoimmune processes. Despite affecting millions worldwide, understanding its genetic pathways remains limited. The choroid plexus (ChP) has been studied in neurodegenerative processes and diseases like MS due to its dysregulation, yet its role in MS pathophysiology remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!