Mechanisms of oxidative response during biodegradation of malathion by S. oneidensis MR-1.

Environ Sci Pollut Res Int

College of Environmental Science and Engineering, Guilin University of Technology, Jiangan Road 12, Guilin, 541004, Guangxi, China.

Published: March 2024

Malathion, an extensively used organophosphorus pesticide, poses a high potential risk of toxicity to humans and the environment. Shewanella (S.) oneidensis MR-1 has been proposed as a strain with excellent bioremediation capabilities, capable of efficiently removing a wide range of hard-to-degrade pollutants. However, the physiological and biochemical response of S. oneidensis MR-1 to malathion is unknown. Therefore, this study aimed to examine how S. oneidensis MR-1 responds physiologically and biochemically to malathion while also investigating the biodegradation properties of the pesticide. The results showed that the 7-day degradation rates of S. oneidensis MR-1 were 84.1, 91.6, and 94.0% at malathion concentrations of 10, 20, and 30 mg/L, respectively. As the concentration of malathion increased, superoxide dismutase and catalase activities were inhibited, leading to a significant rise in malondialdehyde content. This outcome can be attributed to the excessive production of reactive oxygen species (ROS) triggered by malathion stress. In addition, ROS production stimulates the secretion of soluble polysaccharides, which alleviates oxidative stress caused by malathion. Malathion-induced oxidative damage further exacerbated the changes in the cellular properties of S. oneidensis MR-1. During the initial stages of degradation, the cell density and total intracellular protein increased significantly with increasing malathion exposure. This can be attributed to the remarkable resistance of S. oneidensis MR-1 to malathion. Based on scanning electron microscopy observations, continuous exposure to contaminants led to a reduction in biomass and protein content, resulting in reduced cell activity and ultimately leading to cell rupture. In addition, this was accompanied by a decrease in Na/K- ATPase and Ca/Mg-ATPase levels, suggesting that malathion-mediated oxidative stress interfered with energy metabolism in S. oneidensis MR-1. The findings of this study provide new insights into the environmental risks associated with organophosphorus pesticides, specifically malathion, and their potential for bioremediation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10894118PMC
http://dx.doi.org/10.1007/s11356-024-32283-4DOI Listing

Publication Analysis

Top Keywords

oneidensis mr-1
32
mr-1 malathion
12
malathion
11
oneidensis
8
mr-1
8
oxidative stress
8
mechanisms oxidative
4
oxidative response
4
response biodegradation
4
biodegradation malathion
4

Similar Publications

Iron, Earth's most abundant redox-active metal, undergoes both abiotic and microbial redox reactions that regulate the formation, transformation, and dissolution of iron minerals. The electron transfer between ferrous iron (Fe(II)) and ferric iron (Fe(III)) is critical for mineral dynamics, pollutant remediation, and global biogeochemical cycling. Bacteria play a significant role, especially in anaerobic Fe(II) oxidation, contributing to Fe(III) mineral formation in oxygen-depleted environments.

View Article and Find Full Text PDF

A Redox-Enzyme Integrated Microbial Fuel Cell Design Using the Surface Display System in MR-1.

ACS Appl Mater Interfaces

January 2025

Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.

A biofuel cell is an electrochemical device using exoelectrogen or biocatalysts to transfer electrons from redox reactions to the electrodes. While wild-type microbes and natural enzymes are often employed as exoelectrogen and biocatalysts, genetically engineered or modified organisms have been developed to enhance exoelectrogen activity. Here, we demonstrated a redox-enzyme integrated microbial fuel cell (REI-MFC) design based on an exoelectrogen-enhancing strategy that reinforces the electrogenic activity of MR1 by displaying an extra redox enzyme on the cell surface.

View Article and Find Full Text PDF

Bioelectrochemical technology emerges as a promising approach for addressing the challenge of antibiotic residue contamination. This research innovated by incorporating in-situ self-assembled gold nanoparticles (Au-NPs) and reduced graphene oxide (rGO) into a co-cultured electroactive biofilm (EAB) of Raoultella sp. DB-1 and Shewanella oneidensis MR-1 (Au-rGO@R/S-C).

View Article and Find Full Text PDF

The impact of the structural transformation mechanism of fulvic acid on redox capacity during composting with different biowastes.

Environ Res

December 2024

School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China. Electronic address:

Fulvic acid (FA) derived from composting functions can act as electron shuttle, facilitating and expediting the redox reaction during the composting process. However, limited research has been conducted on the redox capacity and structural transformation of FA during composting with different biowastes. The Fe (II) production quantity of the single S.

View Article and Find Full Text PDF

Understanding pioneer bacterial adhesion is essential to appreciate bacterial colonization and consider appropriate control strategies. This bacterial entrapment at the wall is known to be controlled by many physical, chemical or biological factors, including hydrodynamic conditions. However, due to the nature of early bacterial adhesion, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!