GPCRs involved in metabolic diseases: pharmacotherapeutic development updates.

Acta Pharmacol Sin

Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China.

Published: July 2024

G protein-coupled receptors (GPCRs) are expressed in a variety of cell types and tissues, and activation of GPCRs is involved in enormous metabolic pathways, including nutrient synthesis, transportation, storage or insulin sensitivity, etc. This review intends to summarize the regulation of metabolic homeostasis and mechanisms by a series of GPCRs, such as GPR91, GPR55, GPR119, GPR109a, GPR142, GPR40, GPR41, GPR43 and GPR120. With deep understanding of GPCR's structure and signaling pathways, it is attempting to uncover the role of GPCRs in major metabolic diseases, including metabolic syndrome, diabetes, dyslipidemia and nonalcoholic steatohepatitis, for which the global prevalence has risen during last two decades. An extensive list of agonists and antagonists with their chemical structures in a nature of small molecular compounds for above-mentioned GPCRs is provided as pharmacologic candidates, and their preliminary data of preclinical studies are discussed. Moreover, their beneficial effects in correcting abnormalities of metabolic syndrome, diabetes and dyslipidemia are summarized when clinical trials have been undertaken. Thus, accumulating data suggest that these agonists or antagonists might become as new pharmacotherapeutic candidates for the treatment of metabolic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192902PMC
http://dx.doi.org/10.1038/s41401-023-01215-2DOI Listing

Publication Analysis

Top Keywords

metabolic diseases
12
gpcrs involved
8
metabolic syndrome
8
syndrome diabetes
8
diabetes dyslipidemia
8
agonists antagonists
8
metabolic
7
gpcrs
6
involved metabolic
4
diseases pharmacotherapeutic
4

Similar Publications

Background: Autism spectrum disorder (ASD) is a persistent neurodevelopmental disorder affecting brains of children. Mounting evidences support the associations between gut microbial dysbiosis and ASD, whereas detailed mechanisms are still obscure.

Methods: Here we probed the potential roles of gut microbiome in ASD using fecal metagenomics and metabolomics.

View Article and Find Full Text PDF

Daidzein improves muscle atrophy caused by lovastatin by regulating the AMPK/FOXO3a axis.

Chin Med

December 2024

State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.

Background: Lovastatin, the main lipid-lowering component in red yeast rice, is a golden anti-lipid drug, but its long-term application is continuously challenged by potential skeletal muscle atrophy. Daidzein, an isoflavone derived from soybeans and many Chinese medicines, shows therapeutic potential in treating muscle-related diseases and metabolic disorders. However, whether daidzein can improve lovastatin-induced muscle atrophy and the specific mechanism needs to further study.

View Article and Find Full Text PDF

Two new strains of Streptomyces with metabolic potential for biological control of pear black spot disease.

BMC Microbiol

December 2024

State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar, Xinjiang Uygur Autonomous Region, 843300, China.

Background: Pear black spot is caused by Alternaria tenuissima. It is one of the diseases of concern limiting pear production worldwide. Existing cultivation methods and fungicides are not sufficient to control early blight.

View Article and Find Full Text PDF

Vascular dysfunction in Hutchinson-Gilford progeria syndrome.

Trends Mol Med

December 2024

Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, 23001, China. Electronic address:

Most patients with Hutchinson-Gilford progeria syndrome (HGPS) succumb to cardiovascular disease. Recent studies by Barettino et al., Cardoso et al.

View Article and Find Full Text PDF

Point-of-Care Potassium Measurement vs Artificial Intelligence-Enabled Electrocardiography for Hyperkalemia Detection.

Am J Crit Care

January 2025

Shih-Hua Lin is a professor, Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei.

Background: Hyperkalemia can be detected by point-of-care (POC) blood testing and by artificial intelligence- enabled electrocardiography (ECG). These 2 methods of detecting hyperkalemia have not been compared.

Objective: To determine the accuracy of POC and ECG potassium measurements for hyperkalemia detection in patients with critical illness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!