Sesuvium portulacastrum is a perennial halophyte of family Aizoaceae, non-native to Egypt, which was introduced from France ten years ago as an ornamental species. This study reports the detection of S. portulacastrum in the wild in Egypt. Voucher specimens were deposited in the Herbarium of Alexandria University (ALEX). A population of the species was recorded in the wild near Maruit Lake in the north-western coast of Egypt in 2018 during plant resources surveys of the region. The study aimed to assess the potential for S. portulacastrum to spread as an alien species through field observations and geospatial measurements under current conditions in its new habitat. The measured morphological parameters were higher than those recorded in its native habitats. The field observation for three years revealed that the species is proliferating and expanding in the investigated site forming large mats of mean size of up to 9 m. The spatial extent of S. portulacastrum based on the EOO and AOO was quantified, and the expansion rate was estimated at 0.16 ha/year in the investigated site. The geospatial parameter used in the study will not only help in determining the spread rate of the alien species spatially and temporally, but also in its effective management through guiding managers in developing monitoring plans for the species under the changing climate uncertainty. Continuous monitoring and early detection of any potential threats of the introduced species are highly recommended, to avert any potential adverse impacts on native biodiversity and assess its behaviour in the wild habitat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10850471PMC
http://dx.doi.org/10.1038/s41598-024-53627-7DOI Listing

Publication Analysis

Top Keywords

alien species
12
sesuvium portulacastrum
8
investigated site
8
species
7
portulacastrum
5
naturalization invasion
4
potential
4
invasion potential
4
potential sesuvium
4
portulacastrum recorded
4

Similar Publications

Photothermal/photodynamic synergistic antibacterial Nanocellulose film modified with antioxidant MXene-PANI Nanosheets.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

TEMPO-CNF film modified by two-dimension transition metal MXene has certain antibacterial properties. However, the problem of long-lasting stability greatly restricts the feasibility of long-term use of the composite film. Here, we introduced polyaniline (PANI) as a modifying molecule, which was electrostatically adsorbed on the surface of the MXene nanosheets to prevent its self-stacking and delay its oxidation.

View Article and Find Full Text PDF

Structure and assembly mechanisms of the microbial community on an artificial reef surface, Fangchenggang, China.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.

The construction of artificial reefs (ARs) is an effective way to restore habitats and increase and breed fishery resources in marine ranches. However, studies on the impacts of ARs on the structure, function, and assembly patterns of the bacterial community (BC), which is important in biogeochemical cycles, are lacking. The compositions, diversities, assembly patterns, predicted functions, and key environmental factors of the attached and free-living microbial communities in five-year ARs (O-ARs) and one-year ARs (N-ARs) in Fangchenggang, China, were analyzed via 16S rRNA gene sequencing.

View Article and Find Full Text PDF

A Survey of Wild Indigenous Orchid Populations in Western Australia Reveals Spillover of Exotic Viruses.

Viruses

January 2025

School of Medical, Molecular and Forensic Sciences, College of Environmental and Life Sciences, Murdoch University, 90 South Street, Perth 6150, Australia.

is a terrestrial orchid endemic to southwestern Australia. The virus status of has not been studied. Eighty-three samples from 16 populations were collected, and sequencing was used to identify RNA viruses from them.

View Article and Find Full Text PDF

Defensive Mechanisms of Likely Enhance Its Invasiveness as One of the World's Worst Alien Species.

Plants (Basel)

January 2025

Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kita 761-0795, Kagawa, Japan.

Kunth is native to tropical America and has invaded tropical and subtropical Asia and numerous Pacific Islands. It forms dense thickets and reduces native species diversity and populations in its introduced range. This invasive vine also seriously impacts many agricultural crops and is listed as one of the world's 100 worst invasive alien species.

View Article and Find Full Text PDF

The concurrent environmental challenges of invasive species and soil microplastic contamination increasingly affect agricultural ecosystems, yet their combined effects remain underexplored. This study investigates the interactive impact of the legacy effects of Canada goldenrod ( L.) invasion and soil microplastic contamination on wheat ( L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!