Deep learning models, such as AlphaFold2 and RosettaFold, enable high-accuracy protein structure prediction. However, large protein complexes are still challenging to predict due to their size and the complexity of interactions between multiple subunits. Here we present CombFold, a combinatorial and hierarchical assembly algorithm for predicting structures of large protein complexes utilizing pairwise interactions between subunits predicted by AlphaFold2. CombFold accurately predicted (TM-score >0.7) 72% of the complexes among the top-10 predictions in two datasets of 60 large, asymmetric assemblies. Moreover, the structural coverage of predicted complexes was 20% higher compared to corresponding Protein Data Bank entries. We applied the method on complexes from Complex Portal with known stoichiometry but without known structure and obtained high-confidence predictions. CombFold supports the integration of distance restraints based on crosslinking mass spectrometry and fast enumeration of possible complex stoichiometries. CombFold's high accuracy makes it a promising tool for expanding structural coverage beyond monomeric proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10927564 | PMC |
http://dx.doi.org/10.1038/s41592-024-02174-0 | DOI Listing |
JCO Precis Oncol
January 2025
Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
Purpose: To investigate whether hormone receptor-positive, human epidermal growth factor receptor 2-low (HR+HER2-low) versus HR+HER2-zero early breast cancers have distinct genomic and clinical characteristics.
Methods: This study included HR+, HER2-negative early breast cancers from patients enrolled in the phase III, randomized BIG 1-98 and SOFT clinical trials that had undergone tumor genomic sequencing. Tumors were classified HR+HER2-low if they had a centrally reviewed HER2 immunohistochemistry (IHC) score of 1+ or 2+ with negative in situ hybridization and HR+HER2-zero if they had an HER2 IHC score of 0.
J Clin Oncol
January 2025
INSERM, IMRBU955, Univ Paris Est Créteil, Créteil, France.
Purpose: Establishing an accurate prognosis remains challenging in older patients with cancer because of the population's heterogeneity and the current predictive models' reduced ability to capture the complex interactions between oncologic and geriatric predictors. We aim to develop and externally validate a new predictive score (the Geriatric Cancer Scoring System [GCSS]) to refine individualized prognosis for older patients with cancer during the first year after a geriatric assessment (GA).
Materials And Methods: Data were collected from two French prospective multicenter cohorts of patients with cancer 70 years and older, referred for GA: ELCAPA (training set January 2007-March 2016) and ONCODAGE (validation set August 2008-March 2010).
Sci Immunol
January 2025
Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA.
Understanding the naïve B cell repertoire and its specificity for potential zoonotic threats, such as the highly pathogenic avian influenza (HPAI) H5Nx viruses, may allow prediction of infection- or vaccine-specific responses. However, this naïve repertoire and the possibility to respond to emerging, prepandemic viruses are largely undetermined. Here, we profiled naïve B cell reactivity against a prototypical HPAI H5 hemagglutinin (HA), the major target of antibody responses.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
Guanylate binding proteins (GBPs) are large interferon-inducible GTPases, executing essential host defense activities against Toxoplasma gondii, an invasive intracellular apicomplexan protozoan parasite of global importance. T. gondii establishes a parasitophorous vacuole (PV) which shields the parasite from the host's intracellular defense mechanisms.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Otorhinolaryngology, Fujian Provincial Hospital, Fuzhou, Fujian, China.
Objective: Using rabbit models, this study simulated the laryngopharynx's response to the synergistic effects of various acidic reflux environments and pepsin to investigate the response mechanism underlying weak acid reflux and pepsin in the mucosal barrier injury of laryngopharyngeal reflux.
Methods: The rabbits were divided into six groups, and the original larynx was recorded for each group. During the study period, rabbits were sprayed with different doses of acid and pepsin solutions and monitored for hypopharyngeal mucosal transient impedance before and after modeling.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!