This study was deeply focused on developing a novel CTS/GO/ZnO composite as an efficient adsorbent for CO adsorption process. To do so, design of experiment (DOE) was done based on RSM-BBD technique and according to the DOE runs, various CTS/GO/ZnO samples were synthesized with different GO loading (in the range of 0 wt% to 20 wt%) and different ZnO nanoparticle's loading (in the range of 0 wt% to 20 wt%). A volumetric adsorption setup was used to investigate the effect of temperature (in the range of 25-65 °C) and pressure (in the range of 1-9 bar) on the obtained samples CO uptake capability. A quadratic model was developed based on the RSM-BBD method to predict the CO adsorption capacity of the composite sample within design space. In addition, CO adsorption process optimization was conducted and the optimum values of the GO, ZnO, temperature, and pressure were obtained around 23.8 wt%, 18.2 wt%, 30.1 °C, and 8.6 bar, respectively, with the highest CO uptake capacity of 470.43 mg/g. Moreover, isotherm and kinetic modeling of the CO uptake process were conducted and the Freundlich model (R = 0.99) and fractional order model (R = 0.99) were obtained as the most appropriate isotherm and kinetic models, respectively. Also, thermodynamic analysis of the adsorption was done and the ∆H°, ∆S°, and ∆G° values were obtained around - 19.121 kJ/mol, - 0.032 kJ/mol K, and - 9.608 kJ/mol, respectively, indicating exothermic, spontaneously, and physically adsorption of the CO molecules on the CTS/GO/ZnO composite's surface. Finally, a renewability study was conducted and a minor loss in the CO adsorption efficiency of about 4.35% was obtained after ten cycles, demonstrating the resulting adsorbent has good performance and robustness for industrial CO capture purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10850217 | PMC |
http://dx.doi.org/10.1038/s41598-024-53577-0 | DOI Listing |
Inorg Chem
January 2025
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 China.
Photocatalytic reduction of nitrate to N holds great significance for environmental governance. However, the selectivity of nitrate reduction to N is influenced by sacrificial agents and the kinds of cocatalysts (such as Pt and Ag). The presence of unconsumed sacrificial agents can aggravate environmental pollution, while noble metal-based cocatalysts increase application costs.
View Article and Find Full Text PDFNanoscale
January 2025
College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
High salinity in wastewater often hampers the performance of traditional adsorbents by disrupting electrostatic interactions and ion exchange processes, limiting their efficiency. This study addresses these challenges by investigating the salt-promoted adsorption of Cu ions onto amino-functionalized chloromethylated polystyrene (EDA@CMPS) millispheres. The adsorbent was synthesized by grafting ethylenediamine (EDA) onto CMPS, which significantly improved Cu adsorption, achieving nearly three times the capacity in saline solutions (1.
View Article and Find Full Text PDFEnviron Sci Ecotechnol
January 2025
Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.
View Article and Find Full Text PDFChem Sci
January 2025
J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University College Station TX 77843 USA
This perspective work examines the current advancements in integrated CO capture and electrochemical conversion technologies, comparing the emerging methods of (1) electrochemical reactive capture (eRCC) though amine- and (bi)carbonate-mediated processes and (2) direct (flue gas) adsorptive capture and conversion (ACC) with the conventional approach of sequential carbon capture and conversion (SCCC). We initially identified and discussed a range of cell-level technological bottlenecks inherent to eRCC and ACC including, but not limited to, mass transport limitations of reactive species, limitation of dimerization, impurity effects, inadequate generation of CO to sustain industrially relevant current densities, and catalyst instabilities with respect to some eRCC electrolytes, amongst others. We followed this with stepwise perspectives on whether these are considered intrinsic challenges of the technologies - otherwise recommendations were disclosed where appropriate.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, University at Albany - State University of New York (SUNY), 1400 Washington Avenue, Albany, New York 12222, United States.
The contamination of water with dyes stemming from the discharge of industrial waste poses significant environmental risks and health concerns. In this study, the phytoremediation potential of the wetland plant was investigated (as a function of plant biomass, pH, contact time, and initial dye concentration) for the removal of methylene blue and methyl red dyes from wastewater. The experimental adsorption capacities under the optimum conditions were found to be 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!