A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HPAIV outbreak triggers short-term colony connectivity in a seabird metapopulation. | LitMetric

Disease outbreaks can drastically disturb the environment of surviving animals, but the behavioural, ecological, and epidemiological consequences of disease-driven disturbance are poorly understood. Here, we show that an outbreak of High Pathogenicity Avian Influenza Virus (HPAIV) coincided with unprecedented short-term behavioural changes in Northern gannets (Morus bassanus). Breeding gannets show characteristically strong fidelity to their nest sites and foraging areas (2015-2019; n = 120), but during the 2022 HPAIV outbreak, GPS-tagged gannets instigated long-distance movements beyond well-documented previous ranges and the first ever recorded visits of GPS-tagged adults to other gannet breeding colonies. Our findings suggest that the HPAIV outbreak triggered changes in space use patterns of exposed individuals that amplified the epidemiological connectivity among colonies and may generate super-spreader events that accelerate disease transmission across the metapopulation. Such self-propagating transmission from and towards high density animal aggregations may explain the unexpectedly rapid pan-European spread of HPAIV in the gannet.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10850054PMC
http://dx.doi.org/10.1038/s41598-024-53550-xDOI Listing

Publication Analysis

Top Keywords

hpaiv outbreak
12
hpaiv
4
outbreak triggers
4
triggers short-term
4
short-term colony
4
colony connectivity
4
connectivity seabird
4
seabird metapopulation
4
metapopulation disease
4
disease outbreaks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!