Exploring non-genetic evolution of cell states during cancer treatments has become attainable by recent advances in lineage-tracing methods. However, transcriptional changes that drive cells into resistant fates may be subtle, necessitating high resolution analysis. Here, we present ReSisTrace that uses shared transcriptomic features of sister cells to predict the states priming treatment resistance. Applying ReSisTrace in ovarian cancer cells perturbed with olaparib, carboplatin or natural killer (NK) cells reveals pre-resistant phenotypes defined by proteostatic and mRNA surveillance features, reflecting traits enriched in the upcoming subclonal selection. Furthermore, we show that DNA repair deficiency renders cells susceptible to both DNA damaging agents and NK killing in a context-dependent manner. Finally, we leverage the obtained pre-resistance profiles to predict and validate small molecules driving cells to sensitive states prior to treatment. In summary, ReSisTrace resolves pre-existing transcriptional features of treatment vulnerability, facilitating both molecular patient stratification and discovery of synergistic pre-sensitizing therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10850087PMC
http://dx.doi.org/10.1038/s41467-024-45478-7DOI Listing

Publication Analysis

Top Keywords

sister cells
8
cells
7
tracing primed
4
primed resistance
4
resistance cancer
4
cancer sister
4
cells exploring
4
exploring non-genetic
4
non-genetic evolution
4
evolution cell
4

Similar Publications

Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in Drosophila melanogaster, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA.

View Article and Find Full Text PDF

Cell lineage analysis is primarily undertaken to understand cell fate specification and diversification along a cell lineage tree. Built with dual repressible markers, twin-spot mosaic analysis with repressible cell markers (MARCM) labels the two daughter cells made by a common precursor in distinct colors. The power of twin-spot MARCM to systematically subdivide complex lineages is exemplified in studies of Drosophila neural stem-cell lineages.

View Article and Find Full Text PDF

Over 400 cyanobacterial genera have been described up to the present. Since the Cambridge Rules (https://www.iapt-taxon.

View Article and Find Full Text PDF

species are dematiaceous hyphomycetes that are characterised by acropleurogenous, dictyoseptate, campanulate or cheiroid, and brown to dark brown conidia that are composed of several layers of cells radiating from a protuberant basal cell, and mostly seen with appendages arising from the apical cells. The genus was introduced based on morphology to accommodate five of the six species that exhibited holoblastic conidial ontogeny. was referred to as Ascomycota genus as it was challenging to resolve its taxonomic placement based solely on the available morphological data (no DNA sequence data was previously available).

View Article and Find Full Text PDF

Nucleosomal asymmetry shapes histone mark binding and promotes poising at bivalent domains.

Mol Cell

December 2024

Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK. Electronic address:

Promoters of developmental genes in embryonic stem cells (ESCs) are marked by histone H3 lysine 4 trimethylation (H3K4me3) and H3K27me3 in an asymmetric nucleosomal conformation, with each sister histone H3 carrying only one of the two marks. These bivalent domains are thought to poise genes for timely activation upon differentiation. Here, we show that asymmetric bivalent nucleosomes recruit repressive H3K27me3 binders but fail to enrich activating H3K4me3 binders, thereby promoting a poised state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!