The protein extracted from the discarded eye lenses postcataract surgery, referred to as the cataractous eye protein isolate (CEPI), is employed as a polymer matrix for the construction of solid polymer electrolyte species (SPEs). SPEs are expected to be inexpensive, conductive, and mechanically stable in order to be economically and commercially viable. Environmentally, these materials should be biodegradable and nontoxic. Taking these factors into account, we investigated the possibility of using a discarded protein as a polymer matrix for SPEs. Natural compounds sorbitol and sinapic acid (SA) are used as the plasticizer and cross-linker, respectively, to tune the mechanical as well as electrochemical properties. The specific material formed is demonstrated to have high ionic conductivity ranging from ∼2 × 10 to ∼8 × 10 S cm. Without the addition of any salt, the ionic conductivity of sorbitol-plasticized non-cross-linked CEPI is ∼7.5 × 10 S cm. Upon the addition of NaCl, the conductivity is enhanced to ∼8 × 10 S cm. This study shows the possibility of utilizing a discarded protein CEPI as an alternative polymer matrix with further potential for the construction of tunable, flexible, recyclable, biocompatible, and biodegradable SPEs for flexible green electronics and biological devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.3c01229DOI Listing

Publication Analysis

Top Keywords

polymer matrix
12
solid polymer
8
cataractous eye
8
eye protein
8
protein isolate
8
discarded protein
8
ionic conductivity
8
polymer
5
protein
5
biodegradable solid
4

Similar Publications

Background: Regenerative endodontics' primary objective is to establish a favorable environment in the root canal by removing infection, providing a sturdy scaffold, and sealing the apical end of the tooth tightly. These actions should promote pulp regeneration and root development.

Aim: This study evaluated histologically the regenerative potential of injectable hyaluronic acid (HA) hydrogel or collagen with blood clot as scaffolds during revascularization of immature necrotic dog's teeth.

View Article and Find Full Text PDF

Background: Treatment of peripheral nerve defects is a major concern in regenerative medicine. This study therefore aimed to explore the efficacy of a neural graft constructed using adipose mesenchymal stem cells (ADSC), acellular microtissues (MTs), and chitosan in the treatment of peripheral nerve defects.

Methods: Stem cell therapy with acellular MTs provided a suitable microenvironment for axonal regeneration, and compensated for the lack of repair cells in the neural ducts of male 8-week-old Sprague Dawley rats.

View Article and Find Full Text PDF

Magnetic microscale polymeric nanocomposites in drug delivery: advances and challenges.

Drug Discov Today

December 2024

Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Ft. Lauderdale, FL 33328-2018, USA. Electronic address:

Magnetic polymeric nanocomposites are a modern class of materials in which magnetic nanoparticles are embedded in a polymeric matrix. This combination of magnetic responsiveness and tuneable properties bestows versatility on this class of polymer nanocomposite material, which has potentially broad applications in drug delivery, imaging, environmental remediation and beyond. This review covers the uses of magnetic polymeric nanocomposites in drug delivery, discussing magnetic micelles, magnetic liposomes, magnetic hydrogels, magnetic sponges, magnetic mesoporous silica nanoparticles, magnetic microrobots, magnetic elastomers and magnetic scaffolds.

View Article and Find Full Text PDF

Herein, we propose magnetic nanocomposites as a powerful new catalyst for organic pollutant reduction. Polypyrrole (PPy) was synthesized in situ within the semi-interpenetrating alginate (Alg)/gelatin (Ge) network in presence of α-FeO as encapsulating matrix and inorganic filler, respectively. The polymeric matrix can act as bifunctional agent such as a binder and stabilizer to improve nanocatalyst stability while preserving their catalytic/magnetic performances.

View Article and Find Full Text PDF

This study aims to demonstrate that redox couples, regardless of their electrical charges, are unnecessary for detecting and quantifying electroactive proteins using an electrochemical sensor functionalized with a molecularly imprinted polymer. Our approach involved designing a polydopamine imprinted biosensor for detecting bovine serum albumin as the model protein. Electrochemical measurements were conducted in a phosphate-buffered solution (PBS) and solutions containing the negatively charged hexacyanoferrate, the neutral ferrocene, or the positively charged hexaammineruthenium (III) probes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!