Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To quantify time dependent probabilities of outcomes in patients after in-hospital cardiac arrest as a function of duration of cardiopulmonary resuscitation, defined as the interval between start of chest compression and the first return of spontaneous circulation or termination of resuscitation.
Design: Retrospective cohort study.
Setting: Multicenter prospective in-hospital cardiac arrest registry in the United States.
Participants: 348 996 adult patients (≥18 years) with an index in-hospital cardiac arrest who received cardiopulmonary resuscitation from 2000 through 2021.
Main Outcome Measures: Survival to hospital discharge and favorable functional outcome at hospital discharge, defined as a cerebral performance category score of 1 (good cerebral performance) or 2 (moderate cerebral disability). Time dependent probabilities of subsequently surviving to hospital discharge or having favorable functional outcome if patients pending the first return of spontaneous circulation at each minute received further cardiopulmonary resuscitation beyond the time point were estimated, assuming that all decisions on termination of resuscitation were accurate (that is, all patients with termination of resuscitation would have invariably failed to survive if cardiopulmonary resuscitation had continued for a longer period of time).
Results: Among 348 996 included patients, 233 551 (66.9%) achieved return of spontaneous circulation with a median interval of 7 (interquartile range 3-13) minutes between start of chest compressions and first return of spontaneous circulation, whereas 115 445 (33.1%) patients did not achieve return of spontaneous circulation with a median interval of 20 (14-30) minutes between start of chest compressions and termination of resuscitation. 78 799 (22.6%) patients survived to hospital discharge. The time dependent probabilities of survival and favorable functional outcome among patients pending return of spontaneous circulation at one minute's duration of cardiopulmonary resuscitation were 22.0% (75 645/343 866) and 15.1% (49 769/328 771), respectively. The probabilities decreased over time and were <1% for survival at 39 minutes and <1% for favorable functional outcome at 32 minutes' duration of cardiopulmonary resuscitation.
Conclusions: This analysis of a large multicenter registry of in-hospital cardiac arrest quantified the time dependent probabilities of patients' outcomes in each minute of duration of cardiopulmonary resuscitation. The findings provide resuscitation teams, patients, and their surrogates with insights into the likelihood of favorable outcomes if patients pending the first return of spontaneous circulation continue to receive further cardiopulmonary resuscitation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847985 | PMC |
http://dx.doi.org/10.1136/bmj-2023-076019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!