Chem Pharm Bull (Tokyo)
School of Pharmacy, Liaoning University of Traditional Chinese Medicine.
Published: March 2024
This study investigated the hepatoprotective effects of Juncus effusus (J. effusus) and Carbonized J. effusus against liver injury caused by D-galactosamine (D-GalN) in mice. J. effusus and Carbonized J. effusus were administered by gavage once daily starting seven days before the D-GalN treatment. The results of the study indicated that J. effusus and Carbonized J. effusus suppressed the D-GalN-induced generation of serum alanine transaminase (ALT), aspartate aminotransferase (AST), hepatic malondialdehyde (MDA) and tumor necrosis factor-alpha (TNF-α) was observed. The values of superoxide dismutase (SOD) exhibited an increase. In addition, J. effusus and Carbonized J. effusus promoted the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), NADPH quinone oxidoreductase-1 (NQO-1), heme oxygenase-1 (HO-1) as well as the mRNA expression of Nrf2, HO-1, NQO-1 and Glutamate cysteine ligase catalytic subunit (GCLC). The compressed Carbonized J. effusus demonstrated the optimum impact. These results suggest that J. effusus and Carbonized J. effusus protect against D-GalN-induced acute liver injury through the activation of the Nrf2 pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/cpb.c23-00578 | DOI Listing |
J Hazard Mater
April 2024
Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
Untreated stormwater is a major source of microplastics, organic pollutants, metals, and nutrients in urban water courses. The aim of this study was to improve the knowledge about the start-up periods of bioretention filters. A rain garden pilot facility with 13 bioretention filters was constructed and stormwater from a highway and adjacent impervious surfaces was used for irrigation for ∼12 weeks.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
March 2024
School of Pharmacy, Liaoning University of Traditional Chinese Medicine.
This study investigated the hepatoprotective effects of Juncus effusus (J. effusus) and Carbonized J. effusus against liver injury caused by D-galactosamine (D-GalN) in mice.
View Article and Find Full Text PDFWater Sci Technol
December 2023
School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom.
The growing concerns surrounding water pollution and the degradation of ecosystems worldwide have led to an increased use of nature-based solutions (NbSs). This study assessed the feasibility of using floating treatment wetlands (FTWs) as an NbS to treat propylene glycol-contaminated water and quantitatively investigated different removal pathways. With an environmentally relevant concentration of propylene glycol (1,250 mg/L), FTWs containing Acorus calamus and mixed species demonstrated the highest average glycol mass removal efficacy (99%), followed by Carex acutiformis (98%), Juncus effusus (93%), and the control group without plants (10%) after 1 week.
View Article and Find Full Text PDFBioelectrochemistry
December 2023
Dirección de Ingeniería en Tecnología Ambiental y Biotecnología, Universidad Politécnica del Estado de Morelos, Paseo Cuauhnáhuac 566, Lomas del Texcal, Jiutepec, Morelos C.P. 62550, Mexico. Electronic address:
Environmental pollution problems caused by the use of fossil fuels have led to the search for renewable energy sources to mitigate greenhouse gas emissions. In addition, constructed wetlands-microbial fuel cells (CW-MFC) could contribute to sustainable development, considering that this technology focuses on the production of bioelectricity. One of the main challenges of CW-MFCs is to potentiate their bioelectrochemical performance.
View Article and Find Full Text PDFChemosphere
December 2022
Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Institute for Biological Interfaces (IBG 5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany. Electronic address:
Constructed wetlands (CWs) are a cost-effective technology for wastewater treatment in which plant-microorganism relationships play a key role in transforming pollutants. However, there is little knowledge about the spatial organization of microbial metabolic processes in CWs. Here we show the structuring of microbial transformation of inorganic sulfur compounds (ISCs) in two horizontal subsurface-flow CW models fed with sulfate-rich artificial wastewater.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.