Midbrain dopaminergic neurons respond to rewards and have a crucial role in positive motivation and pleasure. Electrical stimulation of dopaminergic neurons and/or their axonal fibers and arborization has been often used to motivate animals to perform cognitive tasks. Still, the electrical stimulation is incompatible with electrophysiological recordings. In this light, optical stimulation following artificial expression of channelrhodopsin-2 (ChR2) in the cell membrane has been also used, but the expression level of ChR2 varies among researchers. Thus, we attempted to stably express ChR2 fused with a red fluorescence protein, mCherry, in dopaminergic neurons. Since dopamine transporter (DAT) gene is known as a marker for dopaminergic neurons, we inserted ChR2-mCherry into the downstream of the DAT gene locus of the rat genome by clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) genome editing and created DAT-ChR2-mCherry knock-in rats. Immunohistochemistry showed that ChR2-mCherry was expressed in dopaminergic neurons in homozygote knock-in rats, whereas whole-cell recordings revealed that ChR2-mCherry-positive neurons did not fire action potentials upon blue light stimulation, indicating that ChR2 was not functional for optogenetics. Nevertheless, fluorescent labeling of dopaminergic neurons mediated by mCherry could help characterize them physiologically and histologically.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.b23-00598DOI Listing

Publication Analysis

Top Keywords

dopaminergic neurons
24
knock-in rats
12
dopamine transporter
8
crispr-cas9 genome
8
genome editing
8
electrical stimulation
8
dat gene
8
neurons
7
dopaminergic
6
generation dopamine
4

Similar Publications

Background: Extracellular vesicles are easily accessible in various biofluids and allow the assessment of disease-related changes in the proteome. This has made them a promising target for biomarker studies, especially in the field of neurodegeneration where access to diseased tissue is very limited. Genetic variants in the LRRK2 gene have been linked to both familial and sporadic forms of Parkinson's disease.

View Article and Find Full Text PDF

Neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD). Transformation of pro-interleukin (IL)-1β into a mature IL-1β via active inflammasome may be related to the progression of PD. Therefore, the modification of inflammasome activity may be a potential therapeutic strategy for PD.

View Article and Find Full Text PDF

Schizophrenia is a mental disorder characterized by positive, negative, and cognitive symptoms which is treated with antipsychotics. However, these drugs present several side effects and, some schizophrenia symptoms, like cognitive, are difficult to treat. The peroxisome proliferator-activated receptors-gamma (PPAR-γ) are expressed in dopaminergic neurons of the midbrain participating in the modulation of neurotransmitters release like dopamine.

View Article and Find Full Text PDF

Mechanism of S100A9-mediated astrocyte activation via TLR4/NF-κB in Parkinson's disease.

Int Immunopharmacol

December 2024

Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Astrocyte-mediated neuroinflammation plays a key role in Parkinson's disease (PD) progression. The proinflammatory protein S100A9 is linked to various neurodegenerative diseases, but its involvement in astrocyte activation in PD remains unclear. Here, we investigate the role of S100A9 in astrocyte-mediated neuroinflammation in PD.

View Article and Find Full Text PDF

Curcumin prevents neurodegeneration by blocking HDAC6-NLRP3 pathway-dependent neuroinflammation in Parkinson's disease.

Int Immunopharmacol

December 2024

Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong, PR China. Electronic address:

Curcumin is a hydrophobic polyphenolic compound with potent anti-inflammatory properties. However, whether it can achieve therapeutic effects by alleviating neuroinflammation in patients with Parkinson's disease (PD) and its potential mechanism are still unknown. This study explored the effects of curcumin on neuroinflammation in dopaminergic neurons and deciphered its direct target in the histone deacetylase 6 (HDAC6)-Nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) pathway, revealing the potential role of curcumin in the treatment of Parkinson's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!