High thermal conductivity regenerated cellulose/carboxylated carbon nanotubes composite films with semi-insulating properties prepared via ionic coordination and hydrothermal synthesis of zinc oxide.

Int J Biol Macromol

School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning 530004, China. Electronic address:

Published: April 2024

With the rapid development of miniaturization and integration of electronic products, its heat dissipation has become the focus of research. In order to improve the heat dissipation efficiency of electronic components, flexible thermal conduction materials are constantly studied. Cellulose has good flexibility and load capacity, which is often used in the preparation of thermal conduction materials. In this paper, carboxylated multi-walled carbon nanotubes (C-MWCNTs) were modified by metal ion coordination and hydrothermal synthesis of zinc oxide (ZnO) to prepare semi-insulating thermal conduction fillers, which were dispersed into regenerated cellulose (RC) to cast to be composite films. The results show that the two modification methods can reduce the probability of phonon scattering and block the electron transport path, so as to improve the thermal conductivity (TC) and electrical insulation properties of the composite films. Especially for the RC/C-MWCNTs@ZnO composite films, when the total filler content is 20 wt%, the in-plane TC can reach 11.89 ± 0.19 (W/(m·K)), and the surface electrical resistivity (ρ) is (5.24 ± 0.17) × 10 Ω. Compared with the RC/C-MWCNTs composite films, the in-plane TC and ρ of the RC/C-MWCNTs@ZnO composites films are increased by about 94.92 % and 555 %, respectively. Therefore, the developed RC-based composite film has broad application prospects in thermal management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.130004DOI Listing

Publication Analysis

Top Keywords

composite films
20
thermal conduction
12
thermal conductivity
8
carbon nanotubes
8
coordination hydrothermal
8
hydrothermal synthesis
8
synthesis zinc
8
zinc oxide
8
heat dissipation
8
conduction materials
8

Similar Publications

The development of safe, environmentally friendly, edible antimicrobial packaging films represents a promising alternative to conventional plastic packaging for reducing spoilage and extending the shelf life of fresh food. Here, we propose a novel strategy to construct edible β-CD-MOF/carvacrol@zein (BCCZ) composite films by intertwining β-CD-MOF loaded with the antimicrobial essential oil carvacrol, and zein. The resulting BCCZ films exhibit high humidity-triggered, long-lasting bactericidal efficacy, effective fruit preservation, and excellent biosafety.

View Article and Find Full Text PDF

Recyclable PVA/starch/TiCT MXene nanocomposite films with superior mechanical and barrier properties.

Int J Biol Macromol

January 2025

School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom. Electronic address:

The fabrication of eco-friendly and high-performance composite materials has gained significant attention for multifunctional applications. Polyvinyl alcohol (PVA)/starch composite films containing varying amounts of TiCT MXene (2.5-10 wt%) were produced using a simple casting method.

View Article and Find Full Text PDF

Non-close-packed crystalline arrays of colloidal particles in an elastic matrix exhibit mechanochromism. However, small interparticle distances often limit the range of reversible color shifts and reduce reflectivity during a blueshift. A straightforward, reproducible strategy using matrix swelling to increase interparticle distance and improve mechanochromic performance is presented.

View Article and Find Full Text PDF

Self-assembled DNA origami lattices on silicon oxide surfaces have great potential to serve as masks in molecular lithography. However, silicon oxide surfaces come in many different forms and the type and history of the silicon oxide has a large effect on its physicochemical surface properties. Therefore, we here investigate DNA origami lattice formation on differently fabricated SiOx films on silicon wafers after wet-chemical oxidation by RCA1.

View Article and Find Full Text PDF

Different temperatures leakage mechanisms of (AlO)(HfO) gate Dielectrics deposited by atomic layer deposition.

Sci Rep

January 2025

Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, Xidian University, Xi'an, 710071, China.

(AlO)(HfO) films with varying compositions were deposited on silicon substrates via plasma-enhanced atomic layer deposition (PEALD), and metal-oxide-semiconductor (MOS) capacitors were fabricated. The impact of varying induced Al content on the dielectric properties of HfO was examined through electrical measurements. The results showed that increasing Al content raised the flat-band voltage, reduced the interface state density (D), and significantly lowered the leakage current at a given voltage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!